3.14 商空间
定义 1. 商集:集合
S
S
S 的一个划分,也称为
S
S
S 的一个 商集
。
例 1: { 0 ˉ , 1 ˉ , ⋯ , 6 ˉ } \{\bar{0},\bar{1},\cdots,\bar{6} \} {0ˉ,1ˉ,⋯,6ˉ} 是整数集 Z \mathbb{Z} Z 的一个划分,记作 Z / ( 7 ) \mathbb{Z}/_{(7)} Z/(7)。
例 2:几何空间 = {以原点 O O O 为起点的所有向量},考虑几何空间中一组相互平行的平面。
\quad 显然,几何空间中的平行面,给出了几何空间的一个划分。

\quad 设 π 0 \pi_{0} π0 是几何空间中过原点 O O O 的一个平面, π 1 \pi_{1} π1 是平行于 π 0 \pi_{0} π0、且不经过原点的一个平面。显然:
γ 1 , γ 2 ∈ π 1 , γ 2 − γ 1 = η ∈ π 0 . \boldsymbol{\gamma}_{1},\boldsymbol{\gamma}_{2} \in \pi_{1},\quad \boldsymbol{\gamma}_{2} - \boldsymbol{\gamma}_{1} = \boldsymbol{\eta} \in \pi_{0}. γ1,γ2∈π1,γ2−γ1=η∈π0.
由平行四边形法则:
γ 1 , γ 2 ∈ π 1 ⟺ γ 2 − γ 1 = η ∈ π 0 . \boldsymbol{\gamma}_{1},\boldsymbol{\gamma}_{2} \in \pi_{1} \Longleftrightarrow \boldsymbol{\gamma}_{2} - \boldsymbol{\gamma}_{1} = \boldsymbol{\eta} \in \pi_{0}. γ1,γ2∈π1⟺γ2−γ1=η∈π0.
定义 2. 陪集:设 V V V 是数域 K K K 上的一个线性空间, W W W 是 V V V 的一个子空间。记
β ∼ α : = β − α ∈ W , α , β ∈ V . \boldsymbol{\beta} \sim \boldsymbol{\alpha}:= \boldsymbol{\beta} - \boldsymbol{\alpha} \in W,\quad \boldsymbol{\alpha},\boldsymbol{\beta} \in V. β∼α:=β−α∈W,α,β∈V.
易证:
(1)反身性:
α − α = 0 ∈ W ⟹ α ∼ α ; \boldsymbol{\alpha} -\boldsymbol{\alpha} = 0 \in W \Longrightarrow \boldsymbol{\alpha} \sim \boldsymbol{\alpha}; α−α=0∈W⟹α∼α;
(2)对称性:
β ∼ α ⟹ β − α ∈ W ⟹ − ( β − α ) ∈ W ⟹ α ∼ β ; \boldsymbol{\beta} \sim \boldsymbol{\alpha} \Longrightarrow \boldsymbol{\beta} - \boldsymbol{\alpha} \in W \Longrightarrow -(\boldsymbol{\beta} - \boldsymbol{\alpha}) \in W \Longrightarrow \boldsymbol{\alpha} \sim \boldsymbol{\beta}; β∼α⟹β−α∈W⟹−(β−α)∈W⟹α∼β;
(3)传递性:
β ∼ α , α ∼ γ ⟹ β − α ∈ W , α − γ ∈ W ⟹ ( β − α ) + ( α − γ ) ∈ W ⟹ β − γ ∈ W ⟹ β ∼ γ . \begin{aligned} \boldsymbol{\beta} \sim \boldsymbol{\alpha},\boldsymbol{\alpha} \sim \boldsymbol{\gamma} &\Longrightarrow \boldsymbol{\beta} - \boldsymbol{\alpha} \in W,\boldsymbol{\alpha} - \boldsymbol{\gamma} \in W \\ &\Longrightarrow (\boldsymbol{\beta} -\boldsymbol{\alpha}) + (\boldsymbol{\alpha} - \boldsymbol{\gamma}) \in W \\ &\Longrightarrow \boldsymbol{\beta} - \boldsymbol{\gamma} \in W \\ &\Longrightarrow \boldsymbol{\beta} \sim \boldsymbol{\gamma}. \end{aligned} β∼α,α∼γ⟹β−α∈W,α−γ∈W⟹(β−α)+(α−γ)∈W⟹β−γ∈W⟹β∼γ.
因此,“
∼
\sim
∼” 是
V
V
V 上的一个 等价关系
。
\quad 进一步地,对于 ∀ α ∈ V \forall \boldsymbol{\alpha} \in V ∀α∈V,可以定义
α ˉ : = { β ∈ V ∣ β ∼ α } = { β ∈ V ∣ β − α ∈ W } = { β ∈ V ∣ β − α = η , η ∈ W } = { α + η ∈ V ∣ η ∈ W } . \begin{aligned} \bar{\boldsymbol{\alpha}}:&=\{ \boldsymbol{\beta} \in V \mid \boldsymbol{\beta} \sim \boldsymbol{\alpha} \} \\ &= \{ \boldsymbol{\beta} \in V \mid \boldsymbol{\beta} - \boldsymbol{\alpha} \in W \} \\ &= \{ \boldsymbol{\beta} \in V \mid \boldsymbol{\beta} - \boldsymbol{\alpha} = \boldsymbol{\eta} ,\boldsymbol{\eta} \in W\} \\ &= \{ \boldsymbol{\alpha} + \boldsymbol{\eta} \in V \mid \boldsymbol{\eta} \in W \}. \end{aligned} αˉ:={β∈V∣β∼α}={β∈V∣β−α∈W}={β∈V∣β−α=η,η∈W}={α+η∈V∣η∈W}.
记
α ˉ : = α + W , \bar{\boldsymbol{\alpha}}:=\boldsymbol{\alpha} + W, αˉ:=α+W,
称
α
+
W
\boldsymbol{\alpha} + W
α+W 为
W
W
W 的一个 陪集
。
\quad
显然,
α
:
=
α
+
W
\boldsymbol{\alpha}:=\boldsymbol{\alpha} + W
α:=α+W,
α
\boldsymbol{\alpha}
α 的等价类,
α
\boldsymbol{\alpha}
α 为
α
ˉ
\bar{\boldsymbol{\alpha}}
αˉ 的一个 代表
。
\quad 下面,研究下陪集的性质。
(1)分析可知,
β ∈ α ˉ : ⟺ β ∈ α + W ⟺ β ∼ α ⟹ β − α ∈ W ⇕ α ∼ β ⇕ α + W = α ˉ = β ˉ = β + W . \begin{aligned} \boldsymbol{\beta} \in \bar{\boldsymbol{\alpha}} :\Longleftrightarrow \boldsymbol{\beta} \in \boldsymbol{\alpha} + W \Longleftrightarrow \boldsymbol{\beta} &\sim \boldsymbol{\alpha} \Longrightarrow \boldsymbol{\beta} - \boldsymbol{\alpha} \in W \\ &\Updownarrow \\ \boldsymbol{\alpha} &\sim \boldsymbol{\beta} \\ &\Updownarrow \\ \boldsymbol{\alpha} + W = \bar{\boldsymbol{\alpha}} &= \bar{\boldsymbol{\beta}} = \boldsymbol{\beta} + W. \end{aligned} β∈αˉ:⟺β∈α+W⟺βαα+W=αˉ∼α⟹β−α∈W⇕∼β⇕=βˉ=β+W.
显然,陪集 α + W \boldsymbol{\alpha} + W α+W 的代表不唯一!
(2)由于 W = 0 + W W = \boldsymbol{0} + W W=0+W,因此子空间 W W W 本身也是自身的一个陪集。
(3)由(1)、(2)可知,
γ + W = W ⟺ γ + W = 0 + W ⟺ γ − 0 ∈ W ⟺ γ ∈ W . \boldsymbol{\gamma} + W = W \Longleftrightarrow \boldsymbol{\gamma} + W = 0 + W \Longleftrightarrow \boldsymbol{\gamma} - 0 \in W \Longleftrightarrow \boldsymbol{\gamma} \in W. γ+W=W⟺γ+W=0+W⟺γ−0∈W⟺γ∈W.
定义3.
V
V
V 对子空间
W
W
W 的商集:由上述等价关系 “
∼
\sim
∼” 确定的
V
V
V 的商集
V
/
∼
{V}\big/_{\sim}
V/∼,记作
V
/
W
{V} \big/ _{W}
V/W,称为
V
V
V 对子空间
W
W
W 的 商集
。
V / W : = { α + W ∣ α ∈ V } V \big/ {}_{W}:=\{\boldsymbol{\alpha} + W \mid \boldsymbol{\alpha} \in V\} V/W:={α+W∣α∈V}
\quad 回顾商集的性质(2): W = 0 + W W = \boldsymbol{0} + W W=0+W,类比学过的线性空间,我们似乎找到了商集的一个“零元”,自然而然地,会思考:
可否在商集上定义运算,如加法、数量乘法?
\quad 很容易作如下定义: ∀ α , β ∈ V \forall \boldsymbol{\alpha},\boldsymbol{\beta} \in V ∀α,β∈V, ∀ k ∈ K \forall k \in K ∀k∈K,
(1) ( α + W ) + ( β + W ) = ( α + β ) + W (\boldsymbol{\alpha} + W) + (\boldsymbol{\beta} + W) = (\boldsymbol{\alpha} + \boldsymbol{\beta}) + W (α+W)+(β+W)=(α+β)+W;
(2) k ⋅ ( α + W ) = k ⋅ α + W k\cdot(\boldsymbol{\alpha} + W) = k\cdot \boldsymbol{\alpha} + W k⋅(α+W)=k⋅α+W.
\quad 那么,这样的定义是否合理呢?我们说是合理的,理由如下。
\quad 对于上面定义的“加法”,设
α + W = γ + W , β + W = δ + W \boldsymbol{\alpha} + W = \boldsymbol{\gamma} + W,\boldsymbol{\beta} + W = \boldsymbol{\delta} + W α+W=γ+W,β+W=δ+W
显然, α − γ ∈ W \boldsymbol{\alpha} - \boldsymbol{\gamma} \in W α−γ∈W, β − δ ∈ W \boldsymbol{\beta} - \boldsymbol{\delta} \in W β−δ∈W.
从而
( α + β ) − ( γ + δ ) = ( α − γ ) + ( β − δ ) ∈ W , (\boldsymbol{\alpha} + \boldsymbol{\beta}) - (\boldsymbol{\gamma} + \boldsymbol{\delta}) = (\boldsymbol{\alpha} - \boldsymbol{\gamma} ) + (\boldsymbol{\beta} - \boldsymbol{\delta}) \in W , (α+β)−(γ+δ)=(α−γ)+(β−δ)∈W,
于是
( α + β ) + W = ( γ + δ ) + W (\boldsymbol{\alpha} + \boldsymbol{\beta}) + W = (\boldsymbol{\gamma} + \boldsymbol{\delta}) + W (α+β)+W=(γ+δ)+W
因此,这样定义的“加法运算”是合理的。
这样定义的“加法”,运算的结果唯一,因此是定义良好的。
同样地,对于上面定义的“数乘”,由于
k ⋅ α − k ⋅ γ = k ⋅ ( α − γ ) ∈ W , k \cdot \boldsymbol{\alpha} - k \cdot \boldsymbol{\gamma} = k \cdot (\boldsymbol{\alpha} - \boldsymbol{\gamma}) \in W, k⋅α−k⋅γ=k⋅(α−γ)∈W,
因此
k ⋅ α + W = k ⋅ γ + W k \cdot \boldsymbol{\alpha} + W = k \cdot \boldsymbol{\gamma} + W k⋅α+W=k⋅γ+W
因此,这样定义的“数乘运算”也是合理的。
前面我们说,可能已经找到了商集的一个“零元” W W W,下面进行验证:
W + ( α + W ) = ( 0 + W ) + ( α + W ) = ( 0 + α ) + W = α + W . \begin{aligned} W + (\boldsymbol{\alpha} + W) &= (\boldsymbol{0} + W) + (\boldsymbol{\alpha} + W) \\ &=(\boldsymbol{0} + \boldsymbol{\alpha}) + W \\ &=\boldsymbol{\alpha} + W. \end{aligned} W+(α+W)=(0+W)+(α+W)=(0+α)+W=α+W.
易证, V / W V \big/_{W} V/W 是数域 K K K 上的一个线性空间。
前面介绍了商空间,下面介绍有关商空间的两个重要定理。
定理 1:设 V V V 是数域 K K K 上的一个线性空间, W W W 是 V V V 的一个子空间,且 dim V = n \dim V = n dimV=n,则有:
dim V = dim V / W + dim W . \dim V = \dim V \big/_{W} + \dim W. dimV=dimV/W+dimW.
证明:
设 α 1 , α 2 , ⋯ , α s \boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{s} α1,α2,⋯,αs 为 W W W 的一个基,将其扩展为 V V V 的一个基:
α 1 , α 2 , ⋯ , α s , α s + 1 , ⋯ , α n . \boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{s},\boldsymbol{\alpha}_{s+1},\cdots,\boldsymbol{\alpha}_{n}. α1,α2,⋯,αs,αs+1,⋯,αn.
对于 ∀ α + W ∈ V / W \forall \boldsymbol{\alpha} + W \in V\big/_{W} ∀α+W∈V/W,设
α = a 1 α 1 + a 2 α 2 + ⋯ + a s α s + a s + 1 α s + 1 ⋯ + a n α n . \boldsymbol{\alpha} = a_{1} \boldsymbol{\alpha}_{1} + a_{2}\boldsymbol{\alpha}_{2} + \cdots +a_{s} \boldsymbol{\alpha}_{s} + a_{s+1} \boldsymbol{\alpha}_{s+1} \cdots + a_{n}\boldsymbol{\alpha}_{n}. α=a1α1+a2α2+⋯+asαs+as+1αs+1⋯+anαn.
则
α + W = ( a 1 α 1 + a 2 α 2 + ⋯ + a s α s + a s + 1 α s + 1 ⋯ + a n α n ) + W = [ ( a 1 α 1 + a 2 α 2 + ⋯ + a s α s ) + W ] + [ ( a s + 1 α s + 1 ⋯ + a n α n ) + W ] = ( 0 + W ) + [ ( a s + 1 α s + 1 ⋯ + a n α n ) + W ] = ( 0 + W ) + ( a s + 1 α s + 1 + W ) + ⋯ + ( a n α n + W ) = W + a s + 1 ( α s + 1 + W ) + ⋯ + a n ( α n + W ) = a s + 1 ( α s + 1 + W ) + ⋯ + a n ( α n + W ) . \begin{aligned} \boldsymbol{\alpha} + W &= (a_{1} \boldsymbol{\alpha}_{1} + a_{2}\boldsymbol{\alpha}_{2} + \cdots +a_{s} \boldsymbol{\alpha}_{s} + a_{s+1} \boldsymbol{\alpha}_{s+1} \cdots + a_{n}\boldsymbol{\alpha}_{n}) + W \\ &=[(a_{1} \boldsymbol{\alpha}_{1} + a_{2}\boldsymbol{\alpha}_{2} + \cdots +a_{s} \boldsymbol{\alpha}_{s}) + W ] + [(a_{s+1} \boldsymbol{\alpha}_{s+1} \cdots + a_{n}\boldsymbol{\alpha}_{n}) + W] \\ &=(\boldsymbol{0} + W) + [(a_{s+1} \boldsymbol{\alpha}_{s+1} \cdots + a_{n}\boldsymbol{\alpha}_{n}) + W] \\ &=(\boldsymbol{0} + W) + (a_{s+1}\boldsymbol{\alpha}_{s+1} + W) + \cdots + (a_{n}\boldsymbol{\alpha}_{n} + W) \\ &= W + a_{s+1}(\boldsymbol{\alpha}_{s+1} + W) + \cdots + a_{n}(\boldsymbol{\alpha}_{n} + W) \\ &= a_{s+1}(\boldsymbol{\alpha}_{s+1} + W) + \cdots + a_{n}(\boldsymbol{\alpha}_{n} + W). \end{aligned} α+W=(a1α1+a2α2+⋯+asαs+as+1αs+1⋯+anαn)+W=[(a1α1+a2α2+⋯+asαs)+W]+[(as+1αs+1⋯+anαn)+W]=(0+W)+[(as+1αs+1⋯+anαn)+W]=(0+W)+(as+1αs+1+W)+⋯+(anαn+W)=W+as+1(αs+1+W)+⋯+an(αn+W)=as+1(αs+1+W)+⋯+an(αn+W).
也就是说, ∀ α + W ∈ V / W \forall \boldsymbol{\alpha} + W \in V\big/_{W} ∀α+W∈V/W 都可以由 α s + 1 + W \boldsymbol{\alpha}_{s+1} + W αs+1+W, ⋯ \cdots ⋯, α n + W \boldsymbol{\alpha}_{n} + W αn+W 线性表出。
下面再来验证线性无关性,证明 α s + 1 + W \boldsymbol{\alpha}_{s+1} + W αs+1+W, ⋯ \cdots ⋯, α n + W \boldsymbol{\alpha}_{n} + W αn+W 是 V / W V \big/_{W} V/W 的一个基,设
k s + 1 ( α s + 1 + W ) + ⋯ + k n ( α n + W ) = 0 + W = W ⇕ ( k s + 1 α s + 1 + W ) + ⋯ + ( k n α n + W ) = W ⇕ ( k s + 1 α s + 1 + ⋯ + k n α n ) + W = W ⇕ k s + 1 α s + 1 + ⋯ + k n α n ∈ W . k_{s+1}(\boldsymbol{\alpha}_{s+1} + W) + \cdots + k_{n}(\boldsymbol{\alpha}_{n} + W) = \boldsymbol{0} + W = W \\ \Updownarrow \\ (k_{s+1}\boldsymbol{\alpha}_{s+1} + W) + \cdots + (k_{n}\boldsymbol{\alpha}_{n} + W) = W \\ \Updownarrow \\ (k_{s+1}\boldsymbol{\alpha}_{s+1} + \cdots + k_{n}\boldsymbol{\alpha}_{n}) + W = W \\ \Updownarrow \\ k_{s+1}\boldsymbol{\alpha}_{s+1} + \cdots + k_{n}\boldsymbol{\alpha}_{n} \in W. ks+1(αs+1+W)+⋯+kn(αn+W)=0+W=W⇕(ks+1αs+1+W)+⋯+(knαn+W)=W⇕(ks+1αs+1+⋯+knαn)+W=W⇕ks+1αs+1+⋯+knαn∈W.
由于 α 1 , α 2 , ⋯ , α s \boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{s} α1,α2,⋯,αs 是 W W W 的一个基,因此存在 k 1 , k 2 , ⋯ , k s k_{1},k_{2},\cdots,k_{s} k1,k2,⋯,ks 使得
k s + 1 α s + 1 + ⋯ + k n α n = k 1 α 1 + ⋯ + k s α s . k_{s+1}\boldsymbol{\alpha}_{s+1} + \cdots + k_{n}\boldsymbol{\alpha}_{n} = k_{1}\boldsymbol{\alpha}_{1} + \cdots + k_{s}\boldsymbol{\alpha}_{s}. ks+1αs+1+⋯+knαn=k1α1+⋯+ksαs.
移项,即得:
k 1 α 1 + ⋯ + k s α s + ( − k s + 1 ) α s + 1 + ⋯ + ( − k n ) α n = 0 . k_{1}\boldsymbol{\alpha}_{1} + \cdots + k_{s}\boldsymbol{\alpha}_{s} + (-k_{s+1})\boldsymbol{\alpha}_{s+1} + \cdots + (-k_{n})\boldsymbol{\alpha}_{n} = \boldsymbol{0}. k1α1+⋯+ksαs+(−ks+1)αs+1+⋯+(−kn)αn=0.
注意, α 1 , α 2 , ⋯ , α s , α s + 1 , ⋯ , α n \boldsymbol{\alpha}_{1},\boldsymbol{\alpha}_{2},\cdots,\boldsymbol{\alpha}_{s},\boldsymbol{\alpha}_{s+1},\cdots,\boldsymbol{\alpha}_{n} α1,α2,⋯,αs,αs+1,⋯,αn 是 V V V 的一个基,因此
k 1 = k 2 = ⋯ = k s = k s + 1 = ⋯ = k n = 0 , k_{1} = k_{2} = \cdots = k_{s} = k_{s+1} = \cdots = k_{n} = 0, k1=k2=⋯=ks=ks+1=⋯=kn=0,
因此, α s + 1 + W \boldsymbol{\alpha}_{s+1} + W αs+1+W, ⋯ \cdots ⋯, α n + W \boldsymbol{\alpha}_{n} + W αn+W 在 V / W V \big/_{W} V/W 上线性无关。
综上, α s + 1 + W \boldsymbol{\alpha}_{s+1} + W αs+1+W, ⋯ \cdots ⋯, α n + W \boldsymbol{\alpha}_{n} + W αn+W 是 V / W V \big/_{W} V/W 的一个基。根据基与维数的关系,有
dim V = dim V / W + dim W . \dim V = \dim V\big/_{W} + \dim W. dimV=dimV/W+dimW.
#
下面再来探究一个与定理 1 相反的情形,即定理 2。
定理 2:设 V / W V\big/_{W} V/W 的一个基为 β 1 + W , β 2 + W , ⋯ , β t + W \boldsymbol{\beta}_{1} + W,\boldsymbol{\beta}_{2} + W,\cdots,\boldsymbol{\beta}_{t} + W β1+W,β2+W,⋯,βt+W, U = L ( β 1 , β 2 , ⋯ , β t ) U=L(\boldsymbol{\beta}_{1},\boldsymbol{\beta}_{2},\cdots,\boldsymbol{\beta}_{t}) U=L(β1,β2,⋯,βt),则:
(1) V = W ⊕ U V = W \oplus U V=W⊕U;
(2) β 1 , β 2 , ⋯ , β t \boldsymbol{\beta}_{1},\boldsymbol{\beta}_{2},\cdots,\boldsymbol{\beta}_{t} β1,β2,⋯,βt 是 U U U 的一个基。
证明:
先说明一下思路,对于(1),先证明 V = W + U V = W + U V=W+U,然后证明是直和,下面开始证明。
任取 α ∈ V \boldsymbol{\alpha}\in V α∈V,由于 β 1 + W , β 2 + W , ⋯ , β t + W \boldsymbol{\beta}_{1} + W,\boldsymbol{\beta}_{2} + W,\cdots,\boldsymbol{\beta}_{t} + W β1+W,β2+W,⋯,βt+W 是 V / W V\big/_{W} V/W 的一个基,因此存在 a 1 , a 2 , ⋯ , a t ∈ K a_{1},a_{2},\cdots,a_{t} \in K a1,a2,⋯,at∈K,使得
α + W = a 1 ( β 1 + W ) + a 2 ( β 2 + W ) + ⋯ + a t ( β t + W ) ⇕ α − ( a 1 β 1 + a 2 β 2 + ⋯ + a t β t ) + W = W ⇕ α − ( a 1 β 1 + a 2 β 2 + ⋯ + a t β t ) ∈ W \boldsymbol{\alpha} + W = a_{1}(\boldsymbol{\beta}_{1} + W) + a_{2}(\boldsymbol{\beta}_{2} + W) + \cdots + a_{t}(\boldsymbol{\beta}_{t} + W) \\ \Updownarrow \\ \boldsymbol{\alpha} - (a_{1} \boldsymbol{\beta}_{1} + a_{2} \boldsymbol{\beta}_{2} + \cdots + a_{t} \boldsymbol{\beta}_{t}) + W = W \\ \Updownarrow \\ \boldsymbol{\alpha} - (a_{1} \boldsymbol{\beta}_{1} + a_{2} \boldsymbol{\beta}_{2} + \cdots + a_{t} \boldsymbol{\beta}_{t}) \in W α+W=a1(β1+W)+a2(β2+W)+⋯+at(βt+W)⇕α−(a1β1+a2β2+⋯+atβt)+W=W⇕α−(a1β1+a2β2+⋯+atβt)∈W
方便起见,作一下化简,设
β = a 1 β 1 + a 2 β 2 + ⋯ + a t β t \boldsymbol{\beta} = a_{1} \boldsymbol{\beta}_{1} + a_{2} \boldsymbol{\beta}_{2} + \cdots + a_{t} \boldsymbol{\beta}_{t} β=a1β1+a2β2+⋯+atβt
于是
α − β ∈ W ⇕ α − β = η ∈ W ⇕ α = β + η ∈ V , β ∈ U , η ∈ W . \boldsymbol{\alpha} - \boldsymbol{\beta} \in W \\ \Updownarrow \\ \boldsymbol{\alpha} - \boldsymbol{\beta} = \boldsymbol{\eta} \in W \\ \Updownarrow \\ \boldsymbol{\alpha} = \boldsymbol{\beta} + \boldsymbol{\eta} \in V,\boldsymbol{\beta} \in U,\boldsymbol{\eta} \in W. α−β∈W⇕α−β=η∈W⇕α=β+η∈V,β∈U,η∈W.
因此
V = U + W . V = U + W. V=U+W.
任取 γ ∈ W ∩ U \boldsymbol{\gamma} \in W \cap U γ∈W∩U,由 γ ∈ U \boldsymbol{\gamma} \in U γ∈U 可得
γ = l 1 β 1 + l 2 β 2 + ⋯ + l t β t , l 1 , l 2 , ⋯ , l t ∈ K . \boldsymbol{\gamma} = l_{1}\boldsymbol{\beta}_{1} + l_{2}\boldsymbol{\beta}_{2} + \cdots + l_{t}\boldsymbol{\beta}_{t},\quad l_{1},l_{2},\cdots,l_{t} \in K. γ=l1β1+l2β2+⋯+ltβt,l1,l2,⋯,lt∈K.
由 γ ∈ W \boldsymbol{\gamma} \in W γ∈W 可得
γ ∈ W ⟺ γ + W = W = ( l 1 β 1 + l 2 β 2 + ⋯ + l t β t ) + W ⇕ 0 + W = ( l 1 β 1 + l 2 β 2 + ⋯ + l t β t ) + W \boldsymbol{\gamma} \in W \Longleftrightarrow \boldsymbol{\gamma} + W = W = (l_{1}\boldsymbol{\beta}_{1} + l_{2}\boldsymbol{\beta}_{2} + \cdots + l_{t}\boldsymbol{\beta}_{t}) + W \\ \Updownarrow \\ \boldsymbol{0} + W = (l_{1}\boldsymbol{\beta}_{1} + l_{2}\boldsymbol{\beta}_{2} + \cdots + l_{t}\boldsymbol{\beta}_{t}) + W γ∈W⟺γ+W=W=(l1β1+l2β2+⋯+ltβt)+W⇕0+W=(l1β1+l2β2+⋯+ltβt)+W
可得两个结论:
一方面,
0 + W = ( l 1 β 1 + l 2 β 2 + ⋯ + l t β t ) + W ⇕ 0 + W = l 1 ( β 1 + W ) + l 2 ( β 2 + W ) + ⋯ + l t ( β t + W ) \boldsymbol{0} + W = (l_{1}\boldsymbol{\beta}_{1} + l_{2}\boldsymbol{\beta}_{2} + \cdots + l_{t}\boldsymbol{\beta}_{t}) + W \\ \Updownarrow \\ \boldsymbol{0} + W = l_{1}(\bold{\beta}_{1} + W) + l_{2}(\bold{\beta}_{2} + W) + \cdots + l_{t}(\bold{\beta}_{t} + W) 0+W=(l1β1+l2β2+⋯+ltβt)+W⇕0+W=l1(β1+W)+l2(β2+W)+⋯+lt(βt+W)
由于 β 1 + W , β 2 + W , ⋯ , β t + W \boldsymbol{\beta}_{1} + W,\boldsymbol{\beta}_{2} + W,\cdots,\boldsymbol{\beta}_{t} + W β1+W,β2+W,⋯,βt+W 线性无关,因此
l 1 = l 2 = ⋯ = l t = 0. l_{1} = l_{2} = \cdots = l_{t} = 0. l1=l2=⋯=lt=0.
从而 γ = 0 ⟹ W ∩ U = { 0 } ⟹ V = W ⊕ U \boldsymbol{\gamma} = \boldsymbol{0} \Longrightarrow W \cap U = \{\boldsymbol{0}\}\Longrightarrow V = W \oplus U γ=0⟹W∩U={0}⟹V=W⊕U.
另一方面,
0 + W = ( l 1 β 1 + l 2 β 2 + ⋯ + l t β t ) + W ⇕ l 1 β 1 + l 2 β 2 + ⋯ + l t β t = 0 \boldsymbol{0} + W = (l_{1}\boldsymbol{\beta}_{1} + l_{2}\boldsymbol{\beta}_{2} + \cdots + l_{t}\boldsymbol{\beta}_{t}) + W \\ \Updownarrow \\ l_{1}\boldsymbol{\beta}_{1} + l_{2}\boldsymbol{\beta}_{2} + \cdots + l_{t}\boldsymbol{\beta}_{t} = \boldsymbol{0} 0+W=(l1β1+l2β2+⋯+ltβt)+W⇕l1β1+l2β2+⋯+ltβt=0
由于 l 1 = l 2 = ⋯ = l t = 0 l_{1} = l_{2} = \cdots = l_{t} = 0 l1=l2=⋯=lt=0,因此 l 1 , l 2 , ⋯ , l t l_{1},l_{2},\cdots,l_{t} l1,l2,⋯,lt 是 U U U 的一个基。
#
参考:
- 邱维声. 高等代数课程. 哔哩哔哩.
- 邱维声. 高等代数——大学高等代数课程创新教材(上册),北京:清华大学出版社,2010.06.
- 邱维声. 高等代数——大学高等代数课程创新教材(下册),北京:清华大学出版社,2010.10.