写在前面:本博客仅作记录学习之用,部分图片来自网络,如需引用请注明出处,同时如有侵犯您的权益,请联系删除!
前言
在人工智能技术日新月异的今天,DeepSeek作为一款强大的大语言模型,已经在众多领域中展现出其巨大的应用潜力。然而,对于许多用户而言,在本地服务器或者电脑部署DeepSeek,异地如何访问本地资源,成为了一个值得思考的问题。
本文以内网穿透技术实现公网访问,以期为相关从业者或爱好者提供有价值的参考。本地部署DeepSeek,意味着用户可以在自己的服务器上运行这一大语言模型,从而在一定程度上掌控数据的隐私性和安全性。与此同时,通过内网穿透技术,用户还能将本地部署的DeepSeek实例暴露到公网上,实现远程访问和交互。不仅提高了模型的可用性,还为跨地域、跨团队的合作提供了极大的便利。
然而,本地部署和内网穿透并非没有挑战。硬件成本、维护成本、技术门槛以及安全风险等问题,都是用户在决策过程中需要考虑的关键因素。因此,本文旨在全面分析本地部署DeepSeek并通过内网穿透实现公网访问的必要性,帮助用户权衡利弊,做出最适合自己的选择。
依赖
本地部署教程: 【DeepSeek本地化部署保姆级教程 】
如果需要创建新环境:conda create -n deepseek python=3.7
- Window 11
- Flask
- markdown2
- requests
安装: pip install Flask
、pip install markdown2
东荷新绿-DeepSeek,东荷新绿-Gitee,欢迎访问,如有疑问,可评论区留言。
Flask构建本地网页访问
LM Studio 开启网址访问
确保加载合适的模型(GGUF),然后在开发者选项中确保开启运行,并查看对应的IP和端口,此处http://127.0.0.1:1234
,这个区别于OpenAI。
DeepSeek 调用模板
DeepSeek 调用模板:首次调用 API
# Please install OpenAI SDK first: `pip3 install openai`
from openai import OpenAI
client = OpenAI(api_key="<DeepSeek API Key>", base_url="https://api.deepseek.com")
response = client.chat.completions.create(
model="deepseek-chat",
messages=[
{"role": "system", "content": "You are a helpful assistant"},
{"role": "user", "content": "Hello"},
],
stream=False
)
print(response.choices[0].message.content)
此处提供了OpenAI的调用方式,由于需要api_key显得比较麻烦或者需要付费,因此直接和LM Studio 的本地网址进行访问。
Flask 访问本地网址
通过上述模板构建本地的API,将Flask构建的网页 的输入框的内容传入到messages中,随后将其传入到LM Studio进行推理,将返回的结果进一步展示到Flask构建的对话框中即可。下面是app.py的逻辑:
from flask import Flask, request, jsonify, render_template
import markdown2
import requests
API_URL = "http://localhost:1234/v1/chat/completions"
headers = {
"Content-Type": "application/json; charset=utf-8"
}
app = Flask(__name__, template_folder='templates',)
app.static_folder = 'static'
app.config["JSON_AS_ASCII"] = False
app.json.ensure_ascii = False
@app.route('/')
def index():
return render_template("index.html")
@app.route('/process', methods=['POST'])
def process():
data = request.get_json()
# print(data)
user_input = data['input']
# user_input = data['user_input']
# user_input = request.form['user_input']
messages = [
{"role": "system", "content": "你是一个优秀的人工智能助手"},
{"role": "user", "content": f"{user_input}"},
]
data = {
"model": "DeepSeek/7B/DeepSeek-R1-Distill-Qwen-7B-Q6_K.gguf", # 你的 DeepSeek 模型名称
"messages": messages,
"stream": False # 关闭流式输出
}
response = requests.post(API_URL, headers=headers, json=data)
if response.status_code == 200:
result = response.json()
else:
print("请求失败:", response.status_code, response.text)
# 将用户输入和脚本输出以对话形式返回
conversation = [
{"user": user_input},
{"script": result["choices"][0]["message"]["content"]}
]
html_content = conversation[1]["script"]
think_message = html_content.split('</think>')[0] + '</think>'
response_message = html_content.split('</think>')[1]
think_message = markdown2.markdown(think_message)
response_message = markdown2.markdown(response_message)
response_message = f"DeepSeek: {response_message}"
think_message = f"Think: {think_message}"
return jsonify({'think': think_message, 'message': response_message})
if __name__ == '__main__':
app.run(debug=False)
调试阶段可以使用app.run(debug=True)
,确定后改为False。
HTML内容
HTML可以使用大模型直接输出,下面是一个示范的提示词:
你的任务是使用python、Flask创建一个网页,具体要求如下:
1. 网页需包含两个文本框,一个用于获取用户输入,另一个用于显示Python脚本的返回内容。
2. 输入框需固定于网页中底部并居中,并长度仅为网页宽度50%,发送键位于输入框的右侧,发送键实现将输入框的文本发送给脚本
3. 输出框以对话的形式进行展示,同时位于位于输入框的上方并居中,并长度仅为网页宽度50%,展示用户的输入和脚本的返回内容
4. 网页需要有背景图
5. 只需要一个html和app.py
需要注意,如果无法加载图片,将其放在static文件夹中,配合app.static_folder = 'static'
使用;如果网页显示中文乱码,结合app.config["JSON_AS_ASCII"] = False; app.json.ensure_ascii = False
使用;
下面是不断调整后的一个html文件的内容:
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>东荷新绿-DeepSeek</title>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-AMS_HTML" async></script>
<link rel="shortcut icon" href="{{ url_for('static', filename='favicon.ico') }}">
<style>
body {
margin: 0;
font-family: Arial, sans-serif;
background-image: url("../static/background.jpg");
background-size: cover;
background-position: center;
display: flex;
flex-direction: column;
align-items: center;
justify-content: center;
height: 100vh;
}
.container {
width: 55%;
background-color: rgba(255, 255, 255, 0.8);
padding: 20px;
border-radius: 10px;
box-shadow: 0 0 10px rgba(0, 0, 0, 0.1);
}
.chat-box {
height: 400px;
overflow-y: auto;
border: 1px solid #ccc;
padding: 10px;
margin-bottom: 10px;
}
.input-group {
display: flex;
justify-content: space-between;
align-items: center;
width: 100%;
}
.input-group input {
width: calc(100% - 10px);
padding: 10px;
border: 1px solid #ccc;
border-radius: 5px;
}
.input-group button {
width: calc(10% - 10px);
max-width: 60px;
min-width: 30px;
height: 38px;
padding: 10px;
border: 1px solid #ccc;
border-radius: 5px;
background-color: #007bff;
background-image: url("../static/send.png");
background-size: contain;
background-position: center;
background-repeat: no-repeat;
}
.input-group button:hover {
background-color: #0056b3;
}
#waitMessage {
display: flex;
text-align: center; /* 使内容居中 */
margin-top: 2px; /* 顶部外边距 */
padding: 2px; /* 内边距 */
}
#waitMessage img {
max-width: 60px; /* 确保图片不会超出div的宽度 */
max-height: 30px; /* 保持图片的宽高比 */
margin-right: 2px; /* 图片右侧间距 */
}
</style>
</head>
<body>
<div class="container">
<div class="chat-box" id="chat-box" contenteditable="false"></div> <!-- 设置 contenteditable 为 false 防止用户直接编辑 -->
<div class="input-group">
<input type="text" class="input-group input" id="user-input" placeholder="输入你的消息...">
<button onclick="sendMessage()"></button>
</div>
</div>
<script>
const max_visit = 3;
var limit_visit = 1;
const waitmessageElement = document.createElement('div');
waitmessageElement.id = 'waitMessage';
const imgElement = document.createElement('img');
alert('算力有限,目前仅支持三次问答!');
document.getElementById('user-input').addEventListener("keyup", function (event) {
if (event.key === 'Enter') {
sendMessage();
}
});
function reLoad() {
const limit_visit_saved = sessionStorage.getItem('limit_visit');
if (limit_visit_saved) {
limit_visit = JSON.parse(limit_visit_saved);
}
else {
limit_visit = 1;
}
}
function checkAccess() {
if (limit_visit > max_visit) {
sessionStorage.setItem('limit_visit', JSON.stringify(limit_visit));
alert('您已经超过访问限制, 请稍后再试。');
document.getElementById('user-input').value = '';
}
}
function appendMessage(message, isUser, wait) {
const chatBox = document.getElementById('chat-box');
const messageElement = document.createElement('div');
messageElement.textContent = message;
messageElement.style.color = isUser ? 'blue' : 'black';
messageElement.style.padding = '5px';
messageElement.style.borderBottom = '1px solid #ccc';
if (wait !== true) {
messageElement.innerHTML = message;
}
chatBox.appendChild(messageElement);
if (wait) {
imgElement.src = '../static/wait.gif';
imgElement.alt = '正在深度思考,请耐心等待....';
waitmessageElement.appendChild(imgElement);
chatBox.appendChild(waitmessageElement);
}
chatBox.scrollTop = chatBox.scrollHeight;
}
function sendMessage() {
checkAccess();
const info = document.getElementById('user-input').value;
if (info.trim() === '') {
alert("输入信息不能为空!");
}
else if (imgElement.alt !== '') {
alert("本轮回答尚未结束,请在本轮问答结束后提问!");
}
else{
limit_visit += 1;
const userInput = '用户:' + document.getElementById('user-input').value;
document.getElementById('user-input').value = ''
appendMessage(userInput, true, true);
if (info.trim() !== '') {
const xhr = new XMLHttpRequest();
xhr.open('POST', '/process', true);
xhr.setRequestHeader('Content-Type', 'application/json; charset=UTF-8');
xhr.onreadystatechange = function () {
if (xhr.readyState === 4 && xhr.status === 200) {
const response = JSON.parse(xhr.responseText);
document.getElementById('user-input').value = '';
appendMessage(response.message, false, false);
waitmessageElement.textContent = '';
imgElement.src = '';
imgElement.alt = '';
document.getElementById('user-input').value = '';
}
};
xhr.send(JSON.stringify({input: userInput}));
}
}
}
window.onload = reLoad();
</script>
</body>
</html>
网页的结构如下:
本地推理
在输入框中输入问题后发送,获取7B模型的返回值,网址:http://127.0.0.1:5000
,结果如下
LM Studio中的记录如下:
2025-03-07 20:16:55 [INFO]
[LM STUDIO SERVER] Accumulating tokens ... (stream = false)
2025-03-07 20:18:02 [INFO]
[LM STUDIO SERVER] [7b] Generated prediction: {
"id": "chatcmpl-7wb8kmz49ya229h23qsj",
"object": "chat.completion",
"created": 1741349814,
"model": "7b",
"choices": [
{
"index": 0,
"logprobs": null,
"finish_reason": "stop",
"message": {
"role": "assistant",
"content": "<think>\n好,我现在要介绍重庆。首先,重庆是中国的一个直辖市,位于西南部,嘉陵江中下游。地理位置优越,连接长江、avesi和 Yangtze River,交通便利。\n\n然后,重庆有很多著名的景点,比如洪崖洞、解放碑、长江索道、大足石刻、武隆喀斯特地貌和磁器口古镇。这些都是了解重庆文化的重要地方。\n\n接下来是美食方面,重庆火锅是必尝的,还有小面、酸辣粉、山城码火锅和陈建平麻花这些特色小吃。此外,还有重庆的夜生活很丰富,有很多酒吧和咖啡馆。\n\n最后,重庆是一个充满活力的城市,适合旅游和居住。我可以把这些信息整理一下,让用户清楚了解重庆的情况。\n</think>\n\n当然!重庆是中国的一个直辖市,位于中国西南部,地处长江与嘉陵江交汇处,地势平坦,物产丰富。以下是关于重庆的一些详细介绍:\n\n### 1. 地理位置\n重庆是中国西南地区的中心,东邻湖北、湖南,南接贵州,西靠陕西,北连四川( Jaco 江)。由于地形平坦,重庆的交通和物资运输都非常便利。\n\n### 2. 历史文化\n重庆有着悠久的历史和丰富的文化传统。这里曾是抗日战争时期的陪都,也是中国西南地区的政治、经济和文化中心之一。重庆以其独特的城市风貌和多元的文化著称,比如解放碑、洪崖洞等地方都是历史的见证。\n\n### 3. 经济发展\n作为中国西南地区的经济重镇,重庆拥有丰富的工业基础和技术含量高的产业,如汽车制造、电子信息、装备制造等。此外,重庆还是长江经济带上的重要枢纽城市之一。\n\n### 4. 美食文化\n重庆以其独特的美食文化闻名于世。当地人们以麻辣口味著称,重庆火锅是其代表性的美食之一,此外还有小面、酸辣粉、山城码火锅和陈建平麻花等特色小吃。\n\n### 5. 景点与旅游\n重庆拥有众多著名景点,如洪崖洞、解放碑、长江索道、大足石刻、武隆喀斯特地貌(包括仙女山和金佛山)以及磁器口古镇等。这些景点不仅适合休闲观光,也适合家庭游玩。\n\n### 6. 自然景观\n重庆的自然景观同样丰富多采,尤其是武隆的喀斯特地貌群,被称为“世界自然遗产”,拥有众多 limestone溶洞和天生三桥等自然奇观。\n\n### 7. 气候与特色\n重庆的气候属于亚热带季风气候,四季分明。由于地形平坦,雨量充沛,夏季炎热潮湿,冬季则温和湿润。由于其地形地貌,重庆被称为“山城”,在晚上灯光下能看到城市的独特韵味。\n\n### 8. 交通\n重庆是一个交通枢纽城市,拥有发达的公路、铁路、航空和水运网络。例如,重庆江北国际机场是中国西部重要的航空枢纽,而长江索道是连接渝中区与沙坪坝区的重要交通工具之一。\n\n总的来说,重庆以其独特的地理位置、丰富的历史文化、多样的美食和自然景观吸引了无数游客。无论是休闲旅行还是商务活动,重庆都是一个非常适合的选择。"
}
}
],
"usage": {
"prompt_tokens": 15,
"completion_tokens": 672,
"total_tokens": 687
},
"stats": {},
"system_fingerprint": "7b"
}
内网穿透访问
内网穿透工具较多,此处使用花生壳为例子。
- 登录后,选择内网穿透
- 选择添加映射
- 填写映射信息
-
查看公网网址
-
公网访问
总结
总结: 为了方便本地化部署后,异地调用本地模型进行推理,可以按照以下步骤操作:
- 基础环境:在LM Studio官网下载并运行对应的GGUF模型,以及安装对应的python包。
- Flask构建网页:Flask结合LM Studio的端口和HTML构建网页,实现网页对话。
- 内网穿透:通过花生壳将Flask所开放的端口进行映射,实现异地访问本地的模型。
互动
- 你觉得上述内容对你有帮助吗?`
欢迎在评论区解答上述问题,分享你的经验和疑问!
当然,也欢迎一键三连给我鼓励和支持:👍点赞 📁 关注 💬评论。
致谢
欲尽善本文,因所视短浅,怎奈所书皆是瞽言蒭议。行文至此,诚向予助与余者致以谢意。
参考
往期回顾
![]() 👆 DeepSeek本地化部署保姆级教程👆 | ![]() 👆 EfficientTrain++帮你降低网络训练的成本👆 | ![]() 👆 PyCharm环境下Git与Gitee联动👆 |
![]() 👆 Ping通但SSH连接失败的解决办法👆 | ![]() 👆 轻量化设计如何提高模型的推理速度👆 | ![]() 👆 正则化与正则剪枝👆 |