【WGS-84坐标系】我去石圪节公社找胡得禄给我弄了个时兴的球头

写在前面:本博客仅作记录学习之用,部分图片来自网络,如需引用请注明出处,同时如有侵犯您的权益,请联系删除!



前言

WGS-84坐标系作为全球地理空间技术的核心基准,定义了地球质心为原点的三维定位标准,通过经度、纬度和高程实现米级至厘米级精度。

其技术优势在于全球统一性和动态更新机制,消除地域偏差,适应地球物理变化,支持GPS、北斗等多系统兼容。该坐标系广泛应用于导航、测绘、遥感和GIS领域,是数字地图、车辆定位、航空航天的基础框架。

日常生活中,手机导航、无人机飞行均依赖其基准,推动现代空间技术发展。其不可替代性在于整合全球数据,促进跨国合作,成为人类探索地球的关键工具。


铺垫知识

地球的外观类似椭球,故很多方法通过选取参考椭球面对地球进行拟合以方便数学计算,如克拉索夫斯基椭球。因此会涉及到对椭球的描述,因此在此简单对部分椭球参数进行说明。

抛个简单问题: 随便给个椭球,你知道它有多椭吗?

简单点说(椭圆类比椭球),给个球头如何判断椭圆有多扁呢?

在这里插入图片描述

换做是我,我也不猜,有点扁、相当扁、非常扁、很扁都很难去进行描述,因此引入了个扁率、偏心率的概念。

随便给定椭圆: x 2 a 2 + y 2 b 2 = 1 ( a > b > 0 ) \frac { x ^ { 2 } } { a ^ { 2 } } + \frac { y ^ { 2 } } { b ^ { 2 } } = 1 \left( a \gt b \gt 0 \right) a2x2+b2y2=1(a>b>0), 如下图,可理解为椭球的截面(子午椭圆)

在这里插入图片描述

其实长短轴的比值就可以描述椭球的扁度,其实扁率也差不多。

扁率: α = a − b a = 1 − b a \alpha = \frac { a - b } { a } =1-\frac {b } { a } α=aab=1ab

本质上还是使用长短轴的比值进行描述,可以发现 a = b a=b a=b 时,扁率为0,此时该椭圆或椭球是圆或圆球。

此外还有偏心率的相关参数。如第一偏心率,第二偏心率,本质上是焦距和长短轴的比值。至于焦距怎么算,上图:

椭圆上一点到两焦点的距离之和( P F 1 + P F 2 PF_1+PF_2 PF1+PF2)是个常数( 2 a 2a 2a),可得 P F 1 = a PF_1=a PF1=a。进一步由勾股定理可得焦距 ( O F 1 OF_1 OF1) 为 a 2 − b 2 \sqrt { a ^ { 2 } - b ^ { 2 } } a2b2

第一偏心率: e = a 2 − b 2 a e = \frac { \sqrt { a ^ { 2 } - b ^ { 2 } } } { a } e=aa2b2
第二偏心率: e ′ = a 2 − b 2 b e ^ { \prime } = \frac { \sqrt { a ^ { 2 } - b ^ { 2 } } } { b } e=ba2b2

扁率 α α α 反映了椭球体的扁平程度,介于1和0之间。偏心率越大,椭球越扁,其数值恒小于1。

WGS-84坐标系

WGS-84经纬坐标系
WGS-84坐标系(World Geodetic System一1984 Coordinate System)是一种国际上采用的地心坐标系,与之相对应的是参心坐标系。参心坐标系是以参考椭球的几何中心为基准的大地坐标系。

WGS-84坐标系:

  • 坐标原点为地球质心
  • 地心空间直角坐标系的Z轴指向BIH (国际时间服务机构)1984.0定义的协议地球极(CTP)方向
  • X轴指向BIH 1984.0的零子午面和CTP赤道的交点
  • Y轴与Z轴、X轴垂直构成右手坐标系
参数数值
长半径(m) 6378137 6378137 6378137
短半径(m) 6356752.31 6356752.31 6356752.31
扁率 1 / 298.257223563 1/ 298. 257223563 1/298.257223563

熟知的GPS就是采取该坐标系进行定位的,其定位的坐标格式为(纬度,纬度,高程),简写(B,L,H)。

那你知道赤道是经线还是纬线吗?

毫无疑问,是纬线,即横纬竖经,记住了横着的是纬线,竖着的是经线(树精)。

那高程又是个啥?和海拔又是什么关系

引用个高程百科:高程,指的是某点沿铅垂线方向到绝对基面的距离,称绝对高程,简称高程。某点沿铅垂线方向到某假定水准基面的距离,称假定高程。

引用个海拔百科:海拔是指地面某个地点或者地理事物高出或者低于海平面的垂直距离。

那基面又是个啥?基面和海平面一样吗?

在这里插入图片描述

正如歌词所述,潮起潮落,海平面何处寻?

因此人们就想到只能用一个确定的平均海水面来作为海拔的起算面。海拔也就定义为高出或者低于平均海水面的高度,即高程或绝对高程。

由于地球内部质量的不均一,地球表面各点的重力线方向并非都指向球心一点,进而处处和重力线方向相垂直的大地水准面,形成一个不规则的曲面,因而世界各国有各自确立的平均海平面,即大地水准面。

在这里插入图片描述

由于使用经纬度进行定位,对于后续应用如智能网联汽车等使用不太方便,后续还需要进行坐标系的转换,如使用UTM坐标系(通用横轴墨卡托)、高斯-克吕格投影等方法,将按照经线划分(3或6 度)的楔形的地图投影到圆柱或椭圆柱面上,进而展开为平面以方便后续应用。

总结

总结: WGS-84坐标系以地球质心为原点,通过经度、纬度和高程实现米级至厘米级精确定位,是全球地理空间技术的核心基准。本文简单介绍了椭球的扁率、偏心率等,进一步介绍了WGS-84坐标系组成、坐标元素,并区分了部分概念的含义。


互动

  • 上述内容对你有用吗?

欢迎在评论区解答上述问题,分享你的经验和疑问!

当然,也欢迎一键三连给我鼓励和支持:👍点赞 📁 关注 💬评论 💰打赏。


致谢

欲尽善本文,因所视短浅,怎奈所书皆是瞽言蒭议。行文至此,诚向予助与余者致以谢意。


参考

[1] 克拉索夫斯基椭球
[2] 高程百科
[3] 海拔百科


往期回顾


👆 DeepSeek本地化部署保姆级教程👆

👆 EfficientTrain++帮你降低网络训练的成本👆

👆 PyCharm环境下Git与Gitee联动👆

👆 Ping通但SSH连接失败的解决办法👆

👆 轻量化设计如何提高模型的推理速度👆

👆 正则化与正则剪枝👆
### WGS-84坐标系概述 WGS-84(World Geodetic System 1984)是一种广泛应用于全球定系统的三维地球参考框架。其定义基于一个标准的椭球模型来描述地球形状,其中长轴长度为6378137.000米,短轴长度为6356752.314米,扁率为1/298.257223563[^1]。 #### 坐标系结构 WGS-84坐标系是一个右手直角坐标系,具体定义如下: - **X轴**:指向BIH(国际时间服务机构)于1984年定义的格林尼治零子午线与协议地球极(CTP)赤道的交点。 - **Y轴**:与X轴和Z轴共同构成右手坐标系- **Z轴**:指向CTP的方向[^2]。 #### 应用场景 WGS-84主要用于GPS技术中,提供了一种标准化的方式用于表示地理置。通过经纬度(latitude, longitude)以及海拔高度(altitude),即LLA坐标系,可以精确描述地球上任意一点的置[^3]。此系统不仅支持导航功能,在地理信息系统(GIS)、地图绘制等领域也有重要用途。 #### 转换注意事项 由于不同地区可能使用不同的椭球基准或者局部优化过的标体系,因此在全国范围内很难到统一适用的转换参数。当需要实现其他坐标系WGS-84转化时,如果精度需求较高,则建议利用GPS设备连接已知参照站点并通过专用软件自动化处理;而在资源有限的情况下,只要有足够的匹配控制点也可尝试手动计算调整。 ```python import numpy as np def lla_to_ecef(lat, lon, alt): """ Convert Latitude Longitude Altitude to ECEF coordinates. Parameters: lat (float): latitude in radians lon (float): longitude in radians alt (float): altitude above the ellipsoid Returns: tuple: X,Y,Z values of position in meters relative to Earth's center """ a = 6378137.0 # Semi-major axis length [m] f_inv = 298.257223563 # Inverse flattening factor [] b = a * (f_inv - 1)/f_inv e_sqrd = ((a*a)-(b*b))/(a*a) N = lambda phi : a / np.sqrt(1-(e_sqrd*(np.sin(phi)**2))) sin_lat = np.sin(lat) cos_lat = np.cos(lat) sin_lon = np.sin(lon) cos_lon = np.cos(lon) r_n = N(lat)+alt x = r_n*cos_lat*cos_lon y = r_n*cos_lat*sin_lon z = (N(lat)*(1-e_sqrd)+alt)*sin_lat return x,y,z ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

东荷新绿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值