POJ 1094 Sorting It All Out
大意:给定A<B B<C形式关系若干,问能否构成严格的从小到大的排序
有许多坑点,首先,输出有三种形式:
- 在第x组序列给出时可以构成严格的排序abcd…
- 在第x组序列给出时出现矛盾
- 不能确定排序的序列
前两者的优先级高于第三者
我们每输入一组关系,都进行一次拓扑排序,判断关系是能严格排序,出现矛盾,还是不确定,一旦这组关系是严格排序或出现矛盾,就立刻输出答案,也就是说假如当前序列已经可以确定严格排序就算后面输入的关系出现矛盾,我们也无视。如果所有关系都输入后仍然没出现前两种矛盾,那我们就输出不能确定。
有一点需要注意,在写拓扑排序函数时,一旦一次入队列元素超过两个,就不能确定,但不能就此返回,还有可能出现成环的情况,也就是矛盾。
进队列的点的个数小于n则成环,等于n则无环,在过程中出现一次进入队列两次的情况就时有并列的情况。
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <queue>
#include <string>
using namespace std;
vector<int>node[30];
struct N{
int in[30];
}x;
queue<int>que;
int tuopu(int n,N y, int p){//n个点 m条边 p表示是否输出点 //-1不可确定, 1可行 0不行
while(!que.empty()) que.pop();
int all=0, ret=1;
for(int i=1; i<=n; i++){
if(y.in[i]==0){
que.push(i);
all++;
if(p) printf("%c",i+'A'-1);
}
}
if(que.size()>1) ret=-1; //不可返回!!!!!!!
while(!que.empty()){
int x=que.front(); que.pop();
for(int i=0; i<node[x].size(); i++){
int b=node[x][i];
y.in[b]--;
if(y.in[b]==0){
all++;
que.push(b);
if(p) printf("%c",b+'A'-1);
}
}
if(que.size()>1) ret = -1;
}
if(p) printf(".\n");
if(all==n){
return ret;
}else{
return 0;
}
}
int main()
{
char s[5];
int n, m;
while(scanf("%d%d",&n,&m)){
if(n==0&&m==0) break;
int f=0;
for(int i=1; i<=n; i++){
node[i].clear();
x.in[i] = 0;
}
for(int i=1; i<=m; i++){
scanf("%s",s);
int a=s[0]-'A'+1, b=s[2]-'A'+1;
node[a].push_back(b); //
x.in[b]++;
//现在有i条边
int e=tuopu(n,x,0);
if(e==1){
printf("Sorted sequence determined after %d relations: ",i);
tuopu(n,x,1); //再跑一边输出
while(i<=m-1){scanf("%3s",s); i++;}
f=1;
break;
}
if(e==0 || a==b){
printf("Inconsistency found after %d relations.\n",i);
while(i<=m-1){scanf("%s",s); i++;}
f=1;
break;
}
}
if(f==0) printf("Sorted sequence cannot be determined.\n");
}
}