统计 | 时间序列学习笔记

本文是时间序列分析的学习笔记,涵盖了损失函数、平方损失、平稳性定义、遍历性以及CAPM、HM和Market Model等经济模型的基础知识。接着深入探讨了AR和MA模型,包括它们的平稳性条件、预测误差及其方差,以及ARMA模型的构成。
摘要由CSDN通过智能技术生成


(所有ppt截图,以及部分代码,来自中财黄白老师的ppt)

一、复习

Lecture 1、2

1、损失函数与最优一步预测

  • 一个随机过程 Z t ≡ ( Y t , X t ′ ) ′ Z_{t} \equiv\left(Y_{t}, X_{t}^{\prime}\right)^{\prime} Zt(Yt,Xt) X t X_{t} Xt是一个向量, Y t Y_{t} Yt是我们感兴趣的变量
  • 我们可以利用T期观测: { Z 1 , … , Z t } \left\{Z_{1}, \ldots, Z_{t}\right\} { Z1,,Zt},来估计模型参数 β ^ t \hat{\beta}_{t} β^t
  • 由此得到一步预测 f ( Z t , β ^ t ) f\left(Z_{t}, \hat{\beta}_{t}\right) f(Zt,β^t) f t , 1 ≡ f ( Z t , β ^ t ) f_{t, 1} \equiv f\left(Z_{t}, \hat{\beta}_{t}\right) ft,1f(Zt,β^t),用 f t , 1 f_{t, 1} ft,1来估计 Y t + 1 Y_{t+1} Yt+1
  • 一步预测误差: e t + 1 ≡ Y t + 1 − f t , 1 e_{t+1} \equiv Y_{t+1}-f_{t, 1} et+1Yt+1ft,1
  • 一步预测误差的损失函数: c ( e t + 1 ) c\left(e_{t+1}\right) c(et+1),最优预测 f t , 1 ∗ f_{t, 1}^{*} ft,1使得损失函数能够达到最小: f t , 1 ∗ = a r g min ⁡ f t , 1 ∫ − ∞ ∞ c ( y − f t , 1 ) d F t ( y ) f_{t, 1}^{*}=arg\min _{f_{t, 1}} \int_{-\infty}^{\infty} c\left(y-f_{t, 1}\right) d F_{t}(y) ft,1=argft,1minc(yft,1)dFt(y)
    则最优预测误差: e t + 1 ∗ = Y t + 1 − f t , 1 ∗ e_{t+1}^{*}=Y_{t+1}-f_{t, 1}^{*} et+1=Yt+1ft,1
  • f t , 1 ∗ f_{t, 1}^{*} ft,1的过程:
    令偏导数等于0, ∂ ∂ f t , 1 ∫ − ∞ ∞ c ( y − f t , 1 ∗ ) d F t ( y ) = 0 \frac{\partial}{\partial f_{t, 1}} \int_{-\infty}^{\infty} c\left(y-f_{t, 1}^{*}\right) d F_{t}(y)=0 ft,1c(yft,1)dFt(y)=0 当积分和求导符号互换时, ∫ − ∞ ∞ ∂ ∂ f t , 1 c ( y − f t , 1 ∗ ) d F t ( y ) ≡ E ( ∂ ∂ f t , 1 c ( Y t + 1 − f t , 1 ∗ ) ∣ I t ) ≡ E ( g t + 1 ∣ I t ) = 0 \begin{aligned} &\int_{-\infty}^{\infty} \frac{\partial}{\partial f_{t, 1}} c\left(y-f_{t, 1}^{*}\right) d F_{t}(y) \equiv E\left(\frac{\partial}{\partial f_{t, 1}} c\left(Y_{t+1}-f_{t, 1}^{*}\right) | I_{t}\right)\\ &\equiv E\left(g_{t+1} | I_{t}\right)=0 \end{aligned} ft,1c(yft,1)dFt(y)E(ft,1c(Yt+1ft,1)It)E(gt+1It)=0 其中, I t = { Z 1 , … , Z t } I_{t}=\left\{Z_{1}, \ldots, Z_{t}\right\} It={ Z1,,Zt} g t + 1 ≡ ∂ ∂ f t , 1 c ( Y t + 1 − f t , 1 ∗ ) g_{t+1} \equiv \frac{\partial}{\partial f_{t, 1}} c\left(Y_{t+1}-f_{t, 1}^{*}\right) gt+1ft,1c(Yt+1ft,1)

2、平方损失函数

  • 平方损失函数: c ( Y t + 1 − f t , 1 ) ≡ ( Y t + 1 − f t , 1 ) 2 c\left(Y_{t+1}-f_{t, 1}\right) \equiv\left(Y_{t+1}-f_{t, 1}\right)^{2} c(Yt+1ft,1)(Yt+1ft,1)2. 所以 g t + 1 ≡ ∂ ∂ f t , 1 c ( Y t + 1 − f t , 1 ∗ ) = − 2 e t + 1 ∗ g_{t+1} \equiv \frac{\partial}{\partial f_{t, 1}} c\left(Y_{t+1}-f_{t, 1}^{*}\right)=-2 e_{t+1}^{*} gt+1ft,1c(Yt+1ft,1)=2et+1,那么 E ( e t + 1 ∗ ∣ I t ) = 0 E\left(e_{t+1}^{*} | I_{t}\right)=0 E(et+1It)=0所以, E ( Y t + 1 − f t , 1 ∗ ∣ I t ) = 0 E\left(Y_{t+1}-f_{t, 1}^{*} | I_{t}\right)=0 E(Yt+1ft,1It)=0,即 f t , 1 ∗ = E ( Y t + 1 ∣ I t ) f_{t, 1}^{*}=E\left(Y_{t+1} | I_{t}\right) ft,1=E(Yt+1It)

另外,在check loss下, f t , 1 ∗ = q α ( Y t + 1 ∣ I t ) f_{t, 1}^{*}=q_{\alpha}\left(Y_{t+1} | I_{t}\right) ft,1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值