目标检测最新综述

一.目标检测的定义
目标检测是计算机视觉领域基础研究,对于计算机视觉中其它的任务通常会依赖于目标检测任务的结果进行后续的处理,比如目标跟踪等。
目标检测是在图片中对数目是可变的目标进行分类和定位。对于目标检测而言,可能存在一些问题:
(1)可能存在多个不同类的目标和目标的数量不定的问题
(2)目标尺度问题(目标大小不一,大物体,小物体)
(3)外在环境干扰(光照的变化,遮挡,图片的质量问题)

目标检测最后输出物体的坐标位置和类别(图片出现的矩形框上的零点几就是代表判断这个物体是某一个类别的置信度,当前判断的类别是真正的类别的概率值,通常在训练之前,会给出一个阈值(默认是0.5),通过这个阈值过滤掉一些错误的矩形框。并且也对矩形框中的物体进行分类)。特征提取,传统的是手工提取,深度学习则是通过卷积神经网络来提取特征。目标检测定位目标的信息(矩形,四维的数据),目标检测通常会采取上采样,反卷积得到同原始图像相同大小的输出结果
**二、**传统目标检测方法
1、 传统的目标检测方法主要有VJ算法,HOG,DMP(包围框回归)等,这些方法主要是在传统的手动设计特征基础上结合了滑动窗口来进行目标检测和定位。传统的目标检测方法存在的缺点,可以主要概括为以下几点:
(1)通过传统的方式手工设计特征的时候,特征可能比较难设计
(2) 设计的特征可能会存在一些问题(对于某种条件不适应)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值