泛函分析基础7-1-度量空间1:度量空间的进一步例子【欧式空间➠离散的度量空间、序列空间S、有界函数空间B(A)、可测函数空间M(X)、C[a,b]空间、l²】

这篇博客介绍了泛函分析的基础,包括希尔伯特和巴拿赫等数学家的贡献。文章从函数和泛函的概念出发,探讨了函数空间如C[a,b]和C1[a,b],并引出了度量空间和赋范线性空间的概念。通过举例说明了离散度量空间、序列空间S、有界函数空间B(A)、可测函数空间L(X)、C[a,b]空间和l2空间等不同类型的度量空间。这些空间的研究为理解函数的收敛性、泛函和算子的连续性问题提供了基础。" 80115476,7397118,Win7环境下安装dlib与face_recognition指南,"['Python库', '安装', '人脸识别', 'dlib', 'face_recognition', 'Anaconda']
摘要由CSDN通过智能技术生成

X X X 是 一个集合,若对于 X X X 中任意两个元素 x , y , x , y , x,y, 都有唯一确定的实数 d ( x , y ) d ( x , y ) d(x,y) 与之对应,而且这一对应关系满足下列条件:

  • 1 ∘ d ( x , y ) ⩾ 0 , d ( x , y ) = 0 1 ^ { \circ } \quad d ( x , y ) \geqslant 0 , d ( x , y ) = 0 1d(x,y)0,d(x,y)=0 的充要条件为 x = y ; x = y ; x=y;
  • 2 ∘ d ( x , y ) ⩽ d ( x , z ) + d ( y , z ) , 2 ^ { \circ } \quad d ( x , y ) \leqslant d ( x , z ) + d ( y , z ) , 2d(x,y)d(x,z)+d(y,z), 对 任意 z z z 都成立,

则称 d ( x , y ) d ( x , y ) d(x,y) x , y x , y x,y 之间的距离,称 ( X , d ) ( X , d ) (X,d)度量空间距离空间

  • X X X 中的元素称为点,
  • 条件 2 ∘ 2 ^ { \circ } 2 称为三点不等式.

距离 d d d对称性,即 d ( x , y ) = d ( y , x ) . d ( x , y ) = d ( y , x ) . d(x,y)=d(y,x).

实际上,在三点不等式中取 z = x , z = x , z=x, 并由条件 1 ∘ 1 ^ { \circ } 1

d ( x , y ) ⩽ d ( x , x ) + d ( y , x ) = d ( y , x ) . d ( x , y ) \leqslant d ( x , x ) + d ( y , x ) = d ( y , x ) . d(x,y)d(x,x)+d(y,x)=d(y,x).

由于 x x x y y y 的次序是任意的,故同样可证 d ( y , x ) ⩽ d ( x , y ) , d ( y , x ) \leqslant d ( x , y ) , d(y,x)d(x,y), 这就得到 d ( x , y ) = d ( y , d ( x , y ) = d ( y , d(x,y)=d(y, x ) . x ) . x).


第二章已给出度量空间(即距离空间)的定义.

当时为了集中研究 n n n 维欧氏空间 R n \mathbf { R } ^ { n } Rn中的测度理论,所以只在 R n \mathbf { R } ^ { n } Rn中讨论邻域、极限、开集、闭集等概念.

但我们曾指出,这些概念可以一字不改地移到一般度量空间中去,在这一章里,我们将沿用这些概念而不再重新定义,并且运用这些概念讨论度量空间的进一步性质.

第二章中已经引入了 n n n 维度量空间的例子,现在我们继续引人其他的度量空间.

例1
离散的度量空间.

X X X 是 任意的非空集合,对 X X X 中任意两点 x , y ∈ X , x , y \in X , x,yX,

d ( x , y ) = { 1 , 当 x ≠ y , 0 , 当当 x = y . d ( x , y ) = \left\{ \begin{array} { l l } 1 , & 当 x \neq y , \\ 0 , & 当 当 x = y . \end{array} \right. d(x,y)={ 1,0,x=y,当当x=y.

容易验证 d ( x , y ) d ( x , y ) d(x,y) 满 足第二章中关于距离的定义中的条件 1 ∘ 1 ^ { \circ } 1 2 ∘ . 2 ^ { \circ } . 2. 我们称 ( X , d ) ( X , d ) (X,d) 为离散的度量空间.由此可见,在任何非空集合上总可以定义距离,使它成为度量空间

例2
序列空间 S . S . S.

S S S 表 示实数列(或复数列)的全体,对 S S S 中任意两点 x = ( ξ 1 , ξ 2 , ⋯   , ξ n , ⋯   ) x = \left( \xi _ { 1 } , \xi _ { 2 } , \cdots , \xi _ { n } , \cdots \right) x=(ξ1,ξ2,,ξn,) y = ( η 1 , η 2 , ⋯   , η n , ⋯   ) , y =\left( \eta _ { 1 } , \eta _ { 2 } , \cdots , \eta _ { n } , \cdots \right) , y=(η1,η2,,ηn,),

d ( x , y ) = ∑ i = 1 ∞ 1 2 i ∣ ξ i − η i ∣ 1 + ∣ ξ i − η i ∣ d ( x , y ) = \sum _ { i = 1 } ^ { \infty } \frac { 1 } { 2 ^ { i } } \frac { \left| \xi _ { i } - \eta _ { i } \right| } { 1 + \left| \xi _ { i } - \eta _ { i } \right| } d(x,y)=i=12i11+ξiηiξiηi

易知 d ( x , y ) d ( x , y ) d(x,y) 满足距离条件 1 ∘ , 1 ^ { \circ } , 1, 下面验证 d ( x , y ) d ( x , y ) d(x,y)满足距离条件 2 ∘ . 2 ^ { \circ } . 2. 为此我们首先证明对任意两个复数 a a a b , b , b, 成 立不等式

∣ a + b ∣ 1 + ∣ a + b ∣ ⩽ ∣ a ∣ 1 + ∣ a ∣ + ∣ b ∣

  • 5
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值