当前,农业生产正深受劳动力短缺困扰,这一现状对生产规模的进一步拓展构成了严重制约。为了突破这一瓶颈,实施自动化已成为提升农业生产力的关键途径,这也使得机器人采收技术备受关注。
现今的机器人采收系统普遍采用先进感知方法,并结合精密收获程序来完成作业。具体而言,它们借助监督学习技术,精准地将作物成熟度划分为可收获与不可收获两类。在检测完毕后,系统会利用分割模型捕捉目标作物的点云数据,进而拟合出球体、圆柱体等几何形状,以便更准确地定位作物的位置和姿态,从而制定出最佳的抓取策略。这一技术在草莓、苹果等多种农作物的采收过程中已展现出显著成效。
然而,当这些技术应用于桁架番茄等鲜食经济作物的自动化收获时,却遇到了挑战。桁架番茄的成熟度评估需更为精细,以确保其卓越的食用品质。但目前基于深度学习的二元分类方法在可解释性和可调整性上尚有不足,这无疑加大了机器人选择性采收的难度,同时也影响了采收产品的质量控制。此外,桁架番茄的采收方式有别于其他作物,直接抓取和拉拽的方式可能会损害作物或相关的农业设施。
更理想的采收方式是通过切割花梗进行采摘,然而,由于花梗细长且颜色与背景相近,这使得花梗的检测和切割点定位变得异常困难。
▍ICRA接受?AHPPEBot有何创新之处?
为应对采摘机器人在成功率和作物损害风险方面的问题,北京工业大学马楠教授团队与中科原动力韩威CEO团队合作,设计了一款名为AHPPEBot的新型机器人。
该机器人通过智能感知作物表型和姿态,对番茄串进行精准识别,并据此做出自主决策与收割动作。为了提升机器人的工作成功率、效率和操作安全性,研究团队在表型分析、姿态估计及采收系统三个核心技术领域进行深入研发并取得了显著进展。
在表型分析方面,研究团队创新性地提出了一种基于对象检测技术的自适应DBScan聚类算法。这一算法能够有效地将单个水果与其所属的番茄桁架进行匹配,进而方便地提取相关信息,包括番茄桁架的整体成熟度、果实数量以及每个果实的成熟度等详尽数据。
以下视频来源于智能交互团队
在姿态估计领域,研究团队采用了一种先进的基于深度学习的关键点检测方法。该方法能够准确估计番茄桁架的姿态,为机械臂的路径规划和运动提供有力支持,同时最大程度地减少与目标物的接触,确保采摘过程的柔顺与安全。
在采收系统方面,AHPPEBot机器人能够综合表型和姿态信息,实现对番茄桁架状态的全面感知,从而自主选择最佳的采收目标。利用姿态关键点,机器人能够策略性地规划手臂轨迹,再配合新颖设计的末端执行器,确保每次采摘都能精准而高效地完成。
该研究成果的相关论文“AHPPEBot: Autonomous Robot for Tomato Har