一、概念解析
GCN的概念首先提出于ICLR2017
CNN的核心在于它的kernel,kernel是一个个小窗口,在图片上平移,通过卷积的方式来提取特征。这里的关键在于图片结构上的平移不变性:一个小窗口无论移动到图片的哪一个位置,其内部的结构都是一模一样的,因此CNN可以实现参数共享。
再回忆一下RNN系列,它的对象是自然语言这样的序列信息,是一个一维的结构,RNN就是专门针对这些序列的结构而设计的,通过各种门的操作,使得序列前后的信息互相影响,从而很好地捕捉序列的特征。
GCN,图卷积神经网络,实际上跟CNN的作用一样,就是一个特征提取器,只不过它的对象是图数据。GCN精妙地设计了一种从图数据中提取特征的方法,从而让我们可以使用这些特征去对图数据进行节点分类(node classification)、图分类(graph classification)、边预测(link prediction),还可以顺便得到图的嵌入表示(graph embedding)
二、核心部分
假设我们手头有一批图数据,其中有N个节点(node),每个节点都有自己的特征,我们设这些节点的特征组成一个N×D维的矩阵X,然后各个节点之间的关系也会形成一个N×N维的矩阵A,也称为邻接矩阵(adjacency matrix)。X和A便是我们模型的输入。
GCN也是一个神经网络层,它的层与层之间的传播方式是:
这个公式中:
A波浪=A+I,I是单位矩阵
D波浪是A波浪的度矩阵(degree matrix),公式为
H是每一层的特征,对于输入层的话,H就是X
σ是非线性激活函数
我们先不用考虑为什么要这样去设计一个公式。我们现在只用知道: [公式] 这个部分,是可以事先算好的,因为D波浪由A计算而来,而A是我们的输入之一。

GCN是一种针对图数据的特征提取器,类似CNN处理图像,RNN处理序列信息。核心公式描述了层间特征传播,通过多层GCN可以进行节点分类、图分类和边预测等任务。度矩阵和邻接矩阵是关键,GCN通过无监督学习进行半监督分类。标准化处理解决了原始A矩阵的局限性,形成对称归一化的拉普拉斯矩阵,这也是GCN卷积的来源。
最低0.47元/天 解锁文章
533

被折叠的 条评论
为什么被折叠?



