DTW应用之关键词检测

本文介绍了热词检测技术,包括音频采集、预处理、特征提取(如MFCC)以及利用DTW算法计算特征间的相似度。重点讲述了如何通过匹配预定义模型来触发语音助手响应的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

热词检测(Hotword Detection)是一种语音识别技术,用于检测特定的短语或单词,例如“Hey Siri”、“OK Google”、“Alexa"等,以触发相应的语音助手或应用程序。

在实现热词检测时,通常需要进行以下几个步骤:

  1. 音频采集:使用麦克风等设备采集音频输入。
  2. 预处理:对音频信号进行预处理,例如去噪、降噪等。
  3. 特征提取:从音频信号中提取特征,例如MFCC(梅尔倒谱系数)、过零率、能量等。
  4. 热词匹配:将提取的特征与预定义的热词模型进行匹配,以检测是否存在热词。
  5. 触发响应:如果检测到了热词,则触发相应的响应操作,例如启动语音助手、播放音乐等。

 DTW原理可参考DTW(动态时间调整)算法原理-CSDN博客

计算训练语音特征和测试语音特征之间的相似性,即分别计算DTW距离,找到最小的DTW距离并对比阈值得出结果。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值