全连接层计算原理

输入的特征为F = c * w * h ,将特征转换为神经元长度为3:

计算过程将特征F展平为 c * w * h长度的序列然后通过全连接计算为改变序列长度为3。

全连接层计算:

假设:输入的神经元长度为3。x1, x2, x3,经过全连接操作后输出的神经元长度为2。y1, y2。

计算过程为y1 = (x1*w11 + b11) + (x2*w21 + b21) + (x1*w31 + b31)

                      = x1*w11+x2*w21+x3*w31+b1

                 y2 = (x1*w12 + b12) + (x2*w22 + b22) + (x1*w32 + b32)

                      = x1*w12+x2*w22+x3*w32+b2

该全连接层的参数量为3*2+2=8分解为权重数量W加上偏置数量B。计算可以为前一层神经元数量*当前层的数量(输出层的数量)+ 偏置数量(与输出层的数量相等)

全连接计算也可理解为:将序列(x1,x2,x3)看作一个是一个整体,然后通过2个卷积核大小为(x1,x2,x3)的卷积计算得到结果为(y1,y2)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值