输入的特征为F = c * w * h ,将特征转换为神经元长度为3:
计算过程将特征F展平为 c * w * h长度的序列然后通过全连接计算为改变序列长度为3。
全连接层计算:
假设:输入的神经元长度为3。x1, x2, x3,经过全连接操作后输出的神经元长度为2。y1, y2。
计算过程为y1 = (x1*w11 + b11) + (x2*w21 + b21) + (x1*w31 + b31)
= x1*w11+x2*w21+x3*w31+b1
y2 = (x1*w12 + b12) + (x2*w22 + b22) + (x1*w32 + b32)
= x1*w12+x2*w22+x3*w32+b2
该全连接层的参数量为3*2+2=8分解为权重数量W加上偏置数量B。计算可以为前一层神经元数量*当前层的数量(输出层的数量)+ 偏置数量(与输出层的数量相等)
全连接计算也可理解为:将序列(x1,x2,x3)看作一个是一个整体,然后通过2个卷积核大小为(x1,x2,x3)的卷积计算得到结果为(y1,y2)