对于全连接层的理解 全连接层的推导

全连接层的推导

全连接层的每一个结点都与上一层的所有结点相连,用来把前边提取到的特征综合起来。由于其全相连的特性,一般全连接层的参数也是最多的。

全连接层的前向计算

下图中连线最密集的2个地方就是全连接层,这很明显的可以看出全连接层的参数的确很多。在前向计算过程,也就是一个线性的加权求和的过程,全连接层的每一个输出都可以看成前一层的每一个结点乘以一个权重系数W,最后加上一个偏置值b得到,即 。如下图中第一个全连接层,输入有50*4*4个神经元结点,输出有500个结点,则一共需要50*4*4*500=400000个权值参数W和500个偏置参数b。


下面用一个简单的网络具体介绍一下推导过程


其中,x1、x2、x3为全连接层的输入,a1、a2、a3为输出,根据我前边在笔记1中的推导,有

可以写成如下矩阵形式:


全连接层的反向传播

以我们的第一个全连接层为例,该层有50*4*4=800个输入结点和500个输出结点。

由于需要对W和b进行更新,还要向前传递梯度,所以我们需要计算如下三个偏导数。

1、对上一层的输出(即当前层的输入)求导
若我们已知转递到该层的梯度 ,则我们可以通过链式法则求得loss对x的偏导数。
首先需要求得该层的输出a i 对输入x j 的偏导数

再通过链式法则求得loss对x的偏导数:

上边求导的结果也印证了我前边那句话:在反向传播过程中,若第x层的a节点通过权值W对x+1层的b节点有贡献,则在反向传播过程中,梯度通过权值W从b节点传播回a节点。

若我们的一次训练16张图片,即batch_size=16,则我们可以把计算转化为如下矩阵形式。

2、对权重系数W求导

我们前向计算的公式如下图,


由图可知,所以:

当batch_size=16时,写成矩阵形式:

3、对偏置系数b求导
由上面前向推导公式可知

即loss对偏置系数的偏导数等于对上一层输出的偏导数。

当batch_size=16时,将不同batch对应的相同b的偏导相加即可,写成矩阵形式即为乘以一个全1的矩阵:




-----------------------------------------------------------------------------------------------------------------------------------

接下来再主要谈谈全连接层的意义

连接层实际就是卷积核大小为上层特征大小的卷积运算,卷积后的结果为一个节点,就对应全连接层的一个点。
假设最后一个卷积层的输出为7×7×512,连接此卷积层的全连接层为1×1×4096。
连接层实际就是卷积核大小为上层特征大小的卷积运算,卷积后的结果为一个节点,就对应全连接层的一个点。如果将这个全连接层转化为卷积层:
1.共有4096组滤波器
2.每组滤波器含有512个卷积核
3.每个卷积核的大小为7×7
4.则输出为1×1×4096
------------------------------------------
若后面再连接一个1×1×4096全连接层。则其对应的转换后的卷积层的参数为:
1.共有4096组滤波器
2.每组滤波器含有4096个卷积核
3.每个卷积核的大小为1×1
4.输出为1X1X4096
相当于就是将特征组合起来进行4096个分类分数的计算,得分最高的就是划到的正确的类别。

而全连接层的坏处就在于其会破坏图像的空间结构,
因此人们便开始用卷积层来“代替”全连接层,
通常采用1×1的卷积核,这种不包含全连接的CNN成为全卷积神经网络(FCN),
FCN最初是用于图像分割任务,
之后开始在计算机视觉领域的各种问题上得到应用,
事实上,Faster R-CNN中用来生成候选窗口的CNN就是一个FCN。
FCN的特点就在于输入和输出都是二维的图像,并且输入和输出具有相对应的空间结构,
在这种情况下,我们可以将FCN的输出看作是一张热度图,用热度来指示待检测的目标的位置和覆盖的区域。
在目标所处的区域内显示较高的热度,
而在背景区域显示较低的热度,
这也可以看成是对图像上的每一个像素点都进行了分类,
这个点是否位于待检测的目标上。
### 使用 TensorFlow 实现全连接层 在 TensorFlow 中,`tf.keras.layers.Dense` 是用于创建全连接层的主要接口。该方法允许用户仅需指定输出节点数量 `units` 和激活函数类型即可轻松构建全连接层[^2]。 下面是一个简单的例子来展示如何利用 `Dense` 层建立一个多层感知器模型: ```python import tensorflow as tf from tensorflow.keras import layers # 假设输入数据形状为 (batch_size, input_dim),这里取 batch_size=4, input_dim=784(即 28x28 图像展平后的大小) input_data = tf.random.normal([4, 28 * 28]) # 定义一个具有两个隐藏层的简单多层感知机模型 model = tf.keras.Sequential([ layers.Dense(512, activation='relu', input_shape=(28 * 28,)), # 首个全连接层,ReLU 激活 layers.Dense(256, activation='relu'), # 第二个全连接层,同样采用 ReLU 激活 layers.Dense(10) # 输出层,默认线性激活 ]) ``` 上述代码片段展示了怎样通过调用 `Sequential()` 方法按顺序堆叠多个 `Dense` 层以形成完整的前馈神经网络结构。每一层都指定了其特定配置——比如第一个隐含层设置了 512 个单元格以及使用了 ReLU 作为非线性的激活机制;最后一层则包含了 10 个单位对应于 MNIST 数据集中可能的手写数字类别数目,并未显式设置激活函数意味着默认应用的是恒等映射[^3]。 为了查看所建模的具体架构及其参数详情,可以调用 `.summary()` 函数打印出整个模型的信息摘要表单。此外,如果想要获取可训练变量列表,则可以通过访问属性 `trainable_variables` 来实现这一点。 最后值得注意的一点是,在实际应用场景下通常还需要考虑加入正则化项防止过拟合现象的发生,同时选择合适的损失函数配合优化算法来进行有效的梯度下降求解过程[^4]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值