二值图像(Binary Image) 是指将图像上的每一个像素只有两种可能的取值或灰度等级状态,人们经常用黑白、B&W、单色图像表示二值图像
二值图像是指在图像中,灰度等级只有两种,也就是说,图像中的任何像素灰度值不是0就是255,再无其他过渡的灰度值。
全局阈值 OpenCv的threshold函数进行全局阈值。
其函数原型为:cv.threshold(src, thresh, maxval, type[, dst]) -> retval, dst
src:表示输入图像(多通道,8位或32位浮点)。
thresh:表示阈值。
maxval:与THRESH_BINARY和THRESH_BINARY_INV阈值类型一起使用设置的最大值。
type: 阈值类型。
retval: 返回的阈值。若是全局固定阈值算法,则返回thresh参数值。若是全局自适应阈值算法,则返回自适应计算得出的合适阈值。
dst: 输出与src相同大小和类型以及相同通道数的图像。
局部阈值 OpenCV的adaptiveThreshold函数进行局部阈值。函数原型为:adaptiveThreshold(src, maxValue, adaptiveMethod, thresholdType, blockSize, C[, dst]) -> dst
src:输入图像(8位单通道图像)。
maxValue:使用 THRESH_BINARY 和 THRESH_BINARY_INV 的最大值.
adaptiveMethod参数表示自适应阈值算法,平均 (ADAPTIVE_THRESH_MEAN_C)或高斯(ADAPTIVE_THRESH_GAUSSIAN_C)。
thresholdType:阈值类型,必须为THRESH_BINARY或THRESH_BINARY_INV的阈值类型。
blockSize: 块大小(奇数且大于1,比如3,5,7… )。
C: 常数,表示从平均值或加权平均值中减去的数。 通常情况下,这是正值,但也可能为零或负值
下面展示 代码
。
import cv2 as cv
import numpy as np
# 图像二值化 0白色 1黑色
# 全局阈值
def threshold_image(image):
# 转为灰度图
gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
cv.imshow("original", gray)
ret, binary = cv.threshold(gray, 0, 255, cv.THRESH_BINARY | cv.THRESH_OTSU) # THRESH_OTSU大津法 全局自适应阈值 参数0可改为任意数字但不起作用
print("阈值:%s" % ret)
cv.imshow("OTSU", binary)
ret, binary = cv.threshold(gray, 0, 255,
cv.THRESH_BINARY | cv.THRESH_TRIANGLE) # TRIANGLE法,,全局自适应阈值, 参数0可改为任意数字但不起作用,适用于单个波峰
print("阈值:%s" % ret)
cv.imshow("TRIANGLE", binary)
ret, binary = cv.threshold(gray, 150, 255, cv.THRESH_BINARY) # 自定义阈值为150,大于150的是白色 小于的是黑色
print("阈值:%s" % ret)
cv.imshow("customize", binary)
ret, binary = cv.threshold(gray, 150, 255, cv.THRESH_BINARY_INV) # 自定义阈值为150,大于150的是黑色 小于的是白色
print("阈值:%s" % ret)
cv.imshow("custom_anti_color", binary)
ret, binary = cv.threshold(gray, 150, 255, cv.THRESH_TRUNC) # 截断 大于150的是改为150 小于150的保留
print("阈值:%s" % ret)
cv.imshow("truncated1", binary)
ret, binary = cv.threshold(gray, 150, 255, cv.THRESH_TOZERO) # 截断 小于150的是改为150 大于150的保留
print("阈值:%s" % ret)
cv.imshow("truncated2", binary)
#局部阈值
def local_image(image):
gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
cv.imshow("original", gray)
binary1 = cv.adaptiveThreshold(gray, 255, cv.ADAPTIVE_THRESH_MEAN_C, cv.THRESH_BINARY, 25, 10)
cv.imshow("local1", binary1)
binary2 = cv.adaptiveThreshold(gray, 255, cv.ADAPTIVE_THRESH_GAUSSIAN_C, cv.THRESH_BINARY, 25, 10)#高斯处理
cv.imshow("local2", binary2)
# 自定义阈值
#求出图像均值作为阈值来二值化
def custom_image(image):
gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY)
cv.imshow("original", gray)
h, w = gray.shape[:2]
m = np.reshape(gray, [1, w*h])#化为一维数组
mean = m.sum() / (w*h) #计算图像的均值,用均值作为阈值,来分割图像
print("mean: ", mean)
ret, binary = cv.threshold(gray, mean, 255, cv.THRESH_BINARY)
cv.imshow("binary", binary)
if __name__ == '__main__':
'''
threshold_image()全局阈值
'''
# src = cv.imread("pic/cat.jpg")
# threshold_image(src)
# cv.waitKey(0)
# cv.destroyAllWindows()
'''
local_image()局部阈值
'''
# src = cv.imread("pic/cat.jpg")
# local_image(src)
# cv.waitKey(0)
# cv.destroyAllWindows()
'''
custom_image()自定义阈值
'''
src = cv.imread("pic/cat.jpg")
custom_image(src)
cv.waitKey(0)
cv.destroyAllWindows()