搭建PyTorch神经网络进行气温预测(练习)

本文介绍如何利用PyTorch建立神经网络模型,对气温数据进行预测。首先,处理包含前天和历史平均气温的数据,接着进行数据标准化。然后构建并训练网络模型,最终展示训练结果并进行可视化。
摘要由CSDN通过智能技术生成
#torch.optim是一个实现了各种优化算法的库
import numpy as np
import pandas as pd 
import matplotlib.pyplot as plt
import torch
import torch.optim as optim
#通过调用 warnings 模块中定义的 warn() 函数来发出警告
import warnings
#通过调用 filterwarnings() 将规则添加到过滤器,ignore"	忽略匹配的警告
warnings.filterwarnings("ignore")
%matplotlib inline
features = pd.read_csv('temps.csv')

#看看数据长什么样子
features.head(10)

在这里插入图片描述

数据表中
year,moth,day,week分别表示的具体的时间; temp_2:前天的最高温度值; temp_1:昨天的最高温度值; average:在历史中,每年这一天的平均最高温度值; actual:这就是我们的标签值了,当天的真实最高温度; friend:这一列可能是凑热闹的,你的朋友猜测的可能值,咱们不管它就好了;

print('数据维度:', features.shape)

在这里插入图片描述

# 处理时间数据,转换格式datetime格式方便操作
import datetime

# 分别得到年,月,日
years = features['year']
months = features['month']
days = features['day']

# datetime格式
#必须把str转换为datetime。转换方法是通过datetime.strptime()实现
#datetime.datetime.strptime:万能的日期格式转换
dates = [str(int(year)) + '-' + str(int(month)) + '-' + str(int(day)) for year, month, day in zip(years, months, days)]
dates = [datetime.datetime.strptime(date, '%Y-%m-%d') for date in dates]
dates[:5]

在这里插入图片描述

#展示 
#准备画图
# 指定默认风格
plt.style.use('fivethirtyeight')

# 设置布局
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2, figsize = (10,10))
#X轴上旋转45度并且右对齐
fig.autofmt_xdate(rotation = 45)

# 标签值
ax1.plot(dates, features['actual'])
ax1.set_xlabel(''); ax1.set_ylabel('Temperature'); ax1.set_title(&#
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值