2021-09-28

[论文笔记]Transferable Adversarial Attacks for Image and Video Object Detection

2019 IJCAI
https://github.com/LiangSiyuan21/Adversarial-Attacks-for-Image-and-Video-Object-Detection
在这里插入图片描述

论文动机

现存的对抗攻击方案,都是基于梯度回传,每次单张图片迭代优化,所以产生的对抗样本具有弱的迁移性以及大的运算量。为了解决这个问题,作者提出来了生成对抗攻击的方案,参考GAN的思路,使用生成器来对输入样布进行攻击,可以一次训练,使用的时候只是前向推理即可得到结果,大大提升运算速度。

论文提出的方案

The generator is an encoder-decoder network with 19components. The discriminator is similar to ResNet-32 forCIFAR-10 and MNIST.
生成器和判别器

self.generator = nn.Sequential(  # input is (nc) x 32 x 32
            nn.Conv2d(num_channels, ngf, 3, 1, 1, bias=True),
            nn.LeakyReLU(0.2, inplace=True),
            # nn.Dropout2d(),
            # state size. 48 x 32 x 32
            nn.Conv2d(ngf, ngf, 3, 1, 1, bias=True),
            nn.LeakyReLU(0.2, inplace=True),
            # nn.Dropout2d(),
            # state size. 48 x 32 x 32
            nn.Conv2d(ngf, ngf, 3, 1, 1, bias=True),
            nn.LeakyReLU(0.2, inplace=True),
            # nn.Dropout(),
            # state size. 48 x 32 x 32
            nn.Conv2d(ngf, ngf, 3, 1, 1, bias=True),
            nn.LeakyReLU(0.2, inplace=True),
            # nn.Dropout(),
            # state size. 48 x 32 x 32
            nn.Conv2d(ngf, ngf, 3, 1, 1, bias=True),
            nn.LeakyReLU(0.2, inplace=True),
            # state size. 48 x 32 x 32
            nn.Conv2d(ngf, ngf, 3, 1, 1, bias=True),
            nn.LeakyReLU(0.2, inplace=True),
            # state size. 48 x 32 x 32
            nn.Conv2d(ngf, ngf, 1, 1, 0, bias=True),
            nn.LeakyReLU(0.2, inplace=True),
            # state size. 3 x 32 x 32
            nn.Conv2d(ngf, num_channels, 1, 1, 0, bias=True),
            nn.Tanh()
        )


class NLayerDiscriminator(nn.Module):
    def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, use_sigmoid=False):
        super(NLayerDiscriminator, self).__init__()
        if type(norm_layer) == functools.partial:
            use_bias = norm_layer.func == nn.InstanceNorm2d
        else:
            use_bias = norm_layer == nn.InstanceNorm2d

        kw = 4
        padw = 1
        sequence = [
            nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw),
            nn.LeakyReLU(0.2, True)
        ]

        nf_mult = 1
        nf_mult_prev = 1
        for n in range(1, n_layers):
            nf_mult_prev = nf_mult
            nf_mult = min(2**n, 8)
            sequence += [
                nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult,
                          kernel_size=kw, stride=2, padding=padw, bias=use_bias),
                norm_layer(ndf * nf_mult),
                nn.LeakyReLU(0.2, True)
            ]

        nf_mult_prev = nf_mult
        nf_mult = min(2**n_layers, 8)
        sequence += [
            nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult,
                      kernel_size=kw, stride=1, padding=padw, bias=use_bias),
            norm_layer(ndf * nf_mult),
            nn.LeakyReLU(0.2, True)
        ]

        sequence += [nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=1, padding=padw)]

        if use_sigmoid:
            sequence += [nn.Sigmoid()]

        self.model = nn.Sequential(*sequence)

    def forward(self, input):
        return self.model(input)

LOSS函数设计

在这里插入图片描述
在这里插入图片描述

结论

使用GAN网络进行生成噪声,并使用判别器来进行修正使他和原图更加接近。接着加入DAG的loss与多层特征LOss来进行对抗攻击的训练,从生成网络的角度来进行对抗攻击,提高攻击的攻击速度,同时可以做到一次训练,多次生成的效果。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值