【目标检测】Faster R-CNN原理详解

本文深入解析Faster R-CNN目标检测网络,包括整体结构、RPN层的工作原理、ROI Pooling的运用,以及Classifier的分类和坐标预测。Faster R-CNN通过RPN和ROI Pooling解决了Fast R-CNN在候选框提取上的效率问题,提升了目标检测性能。
摘要由CSDN通过智能技术生成

(一)前言:

2014年R-CNN结构的提出,首次将卷积神经网络带入目标检测领域。2015年发表的Fast R-CNN,流程更为紧凑,大幅提高目标检测速度。
在这里插入图片描述
但是Fast R-CNN在区域建议(即候选框的提取)上耗费了大量时间。

为了解决这个问题,作者提出了Faster R-CNN网络,其中最主要的贡献就是使用了RPN(Region Proposal Networks,区域生成网络)和ROI Pooling(Region of Interest)层,使检测的综合性能有了大幅提升。

(二)网络结构:

2.1 整体结构解析

在这里插入图片描述

整体结构如图所示,具体过程为:

    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包

    打赏作者

    BIT可达鸭

    你的鼓励将是我创作的最大动力

    ¥1 ¥2 ¥4 ¥6 ¥10 ¥20
    扫码支付:¥1
    获取中
    扫码支付

    您的余额不足,请更换扫码支付或充值

    打赏作者

    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值