【模型量化】HAQ:强化学习让模型压缩90%而精度几乎不受影响

HAQ是一个基于强化学习的混合精度量化框架,针对MobilenetV3进行自动量化,通过智能体学习每层的最优量化位宽,以减少模型大小和提升硬件效率,同时保持高精度。该算法引入新的评价指标——延迟和功耗,采用DDPG策略进行搜索,并在DTD数据集上进行实验。
摘要由CSDN通过智能技术生成

HAQ-for-Mobilenetv3-Quantization

代码地址:

https://github.com/Sharpiless/HAQ-for-Mobilenetv3-Quantization

论文地址:

https://arxiv.org/abs/1811.08886?

算法简介:

HAQ(Hardware-Aware Automated Quantization with Mixed Precision)是一个自动化的混合精度量化框架,使用强化学习让每一层都学习到了适合该层的量化位宽。
在这里插入图片描述
不同的网络层有不同的冗余性,因此对于精度的要求也不同,当前已经有许多的芯片开始支持混合精度。通常来说,浅层特征提取需要更高的精度,卷积层比全连接层需要更高的精度。如果手动

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BIT可达鸭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值