经典算法之动态规划(背包问题)

题目:现有四个物品,背包总容量为8,背包最多能装入价值为多少的物品

物品编号:1    2    3    4

物品体积:2    3    4    5

物品价值:3    4    5    6

编号\容量012345678
0000000000
1003333333
2003447777
3003457899
400345789 

填表思路:

  1. 装不下当前物品,那么前n个物品最佳组合和前n-1个物品最佳组合一样。
  2. 能装下当前物品
    1. 装入当前物品,背包中给当前物品预留相应空间,前n-1个物品最佳组合加上当前物品的价值,就是总价值
    2. 不装当前物品,那么前n个物品最佳组合和前n-1个物品最佳组合一样
    3. 选取1和2中较大价值,作为当前最佳组合的价值

背包问题回溯:
在使得背包内总价值最大的情况下,背包内装了那些物品

分析:当前价值 10,如果4号物品没装进去,那么当前价值(10)应该和前三个物品总价值(9)应该相同。显然10和9不同,所以4号物品被装进去了。

总结:从后往前回溯,如果前n个物品最佳组合价值和前n-1个物品最佳组合的价值一样,说明第n个物品没有被装入背包。反之,则被装入背包。

代码实现

// Dynamic programming

/* 物品编号  1   2   3   4
   体积     2   3   4   5
   价值     3   4   5   6*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int weight[5] = {0, 2, 3, 4, 5};
int value[5] = {0, 3, 4, 5, 6};
int dp[5][9] = {0};
int object[5];

int max(int x, int y){
    return x>y?x:y;
}

void printDp() {
    
    for(int i=0;i<5;i++) {
        for (int j=0; j<9; j++) {
            printf("%d\t",dp[i][j]);
        }
        printf("\n");
    }
        
}

int dpWrite() {

    memset(dp,0,sizeof(dp));
    for (size_t i = 1; i < 5; i++) //物品编号
    {
        for (size_t j = 1; j < 9; j++) // 背包容量
        {
            if(weight[i]>j) //物品放不下
                dp[i][j] = dp[i-1][j]; 
            else
                dp[i][j]= max(dp[i-1][j], value[i] + dp[i-1][j-weight[i]]);
        }
        
    }
    printDp();
}

// 背包回溯问题
void Find(int i, int j) {
    if (i == 0) {
        for (int ii=0; ii<5; ii++) {
            printf("%d ",object[ii]);
        }
        return;
    }
    // 没装入背包
    if (dp[i][j] == dp[i - 1][j]) {
        object[i] = 0;
        Find(i-1, j);
    }
    // 装入背包
    else if (dp[i][j] == value[i] + dp[i - 1][j - weight[i]]) {
        object[i] = 1;
        Find(i-1, j-weight[i]);
    }
}

int main() {
    dpWrite();
    Find(4, 8);
    printf("\n(%d, %d)===>[",4, 8);
    for (int i=0; i<5; ++i) {
        printf("%d ", object[i]);
    }
    printf("]\n");
}

 

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
问题描述: 假设有一个能装入体积为T的背包和n件体积分别为w1 , w2 , … , wn 的物品,能否从n件物品中挑选若干件恰好装满背包,即使w1 +w2 + … + wn=T,要求找出所有满足上述条件的解。例如:当T=10,各件物品的体积{1,8,4,3,5,2}时,可找到下列4组解: (1,4,3,2) (1,4,5) (8,2) (3,5,2)。 问题提示: 可利用回溯法的设计思想来解决背包问题。首先将物品排成一列,然后顺序选取物品装入背包,假设已选取了前i 件物品之后背包还没有装满,则继续选取第i+1件物品,若该件物品"太大"不能装入,则弃之而继续选取下一件,直至背包装满为止。但如果在剩余的物品中找不到合适的物品以填满背包,则说明"刚刚"装入背包的那件物品"不合适",应将它取出"弃之一边",继续再从"它之后"的物品中选取,如此重复,直至求得满足条件的解,或者无解。 题目之二: 问题描述: 假设有n件物品,这些物品的重量分别是W1 , W2 , … , Wn,物品的价值分别是V1,V2, …,Vn。求从这n件物品中选取一部分物品的方案,使得所选中的物品重量不超过限定的重量W(W<∑Wi, i=1,2,┅,n),但所选中的物品价值之和为最大。 问题提示: 利用递归寻找物品的选择方案。假设前面已有了多种选择的方案,并保留了其中价值最大的方案于数组option[]中,该方案的价值保存于变量max_value中。当前正在考察新方案,其物品选择情况保存于数组eop[]中。假设当前方案已考虑了i-1件物品,现在要考虑第i件物品:当前方案已包含的物品的重量之和为tw;因此,若其余物品都选择是可能的话,本方案所能达到的价值的期望值设为tv。引入tv是当一旦当前方案的价值的期望值也小于前面方案的价值max_value时,继续考察当前方案已无意义,应终止当前方案而去考察下一个方案。 第i件物品的选择有两种可能: ① 物品i被选择。这种可能性仅当包含它不会超过方案重量的限制才是可行的。选中之后继续递归去考虑其余物品的选择; ② 物品i不被选择。这种可能性仅当不包含物品i也有可能找到价值更大的方案的情况。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

☜@_@达奚黑雁

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值