T-SNE的控制台信息反应了什么?

在这里插入图片描述

学习代码


[t-SNE] Computing 91 nearest neighbors...
[t-SNE] Indexed 1050 samples in 0.003s...
[t-SNE] Computed neighbors for 1050 samples in 0.059s...
[t-SNE] Computed conditional probabilities for sample 1000 / 1050
[t-SNE] Computed conditional probabilities for sample 1050 / 1050
[t-SNE] Mean sigma: 14.442199
[t-SNE] KL divergence after 250 iterations with early exaggeration: 121.511391
[t-SNE] KL divergence after 1000 iterations: 2.100818
(1050, 2)


这些信息来自 t-SNE 的计算过程,提供了有关 t-SNE 运行情况的详细信息。以下是每一行信息的简要解释:

  1. [t-SNE] Computing 91 nearest neighbors…

    • t-SNE 正在计算每个样本的最近邻。
  2. [t-SNE] Indexed 1050 samples in 0.003s…

    • t-SNE 已经对 1050 个样本建立了索引,并在 0.003 秒内完成。
  3. [t-SNE] Computed neighbors for 1050 samples in 0.059s…

    • t-SNE 已经为 1050 个样本计算了最近邻。
  4. [t-SNE] Computed conditional probabilities for sample 1000 / 1050

    • t-SNE 正在计算第 1000 个样本的条件概率。
  5. [t-SNE] Computed conditional probabilities for sample 1050 / 1050

    • t-SNE 已经计算了所有 1050 个样本的条件概率。
  6. [t-SNE] Mean sigma: 14.442199

    • 平均 sigma 是 t-SNE 中用于计算条件概率的参数,表示样本之间的平均距离。
  7. [t-SNE] KL divergence after 250 iterations with early exaggeration: 121.511391

    • 在前期夸大(early exaggeration)的 250 次迭代后,KL 散度为 121.511391。KL 散度是 t-SNE 算法中的一个目标,目的是在降维后保留样本之间的相对关系。
  8. [t-SNE] KL divergence after 1000 iterations: 2.100818

    • 在总共 1000 次迭代后,KL 散度降至 2.100818。KL 散度越低,表示 t-SNE 的降维效果越好。
  9. (1050, 2)

    • 最终的 t-SNE 降维结果是一个形状为 (1050, 2) 的数组,其中每个样本被映射到了二维空间。

这些信息提供了 t-SNE 在降维过程中的一些关键统计和参数,以及算法的收敛情况。通常,KL 散度越低,表示 t-SNE 的降维效果越好,更能够保留原始数据的结构。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

王摇摆

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值