深度学习:基于python:第二章

本文深入探讨了感知机的概念及其在逻辑电路中的应用,如与门、与非门、或门的实现。同时,指出了感知机的局限性,无法表示异或门,这需要多层感知机来解决。介绍了线性与非线性空间的区别,并阐述了多层感知机如何克服这一局限,能够表示更复杂的非线性关系。激活函数作为神经网络的关键组成部分,负责将输入信号转换为输出信号。通过这些基本概念,文章为从感知机过渡到神经网络奠定了基础。
摘要由CSDN通过智能技术生成

感知机

2.1感知机是什么

在这里插入图片描述

2.2简单逻辑电路

2.2.1 与门、与非、或

与门:两个1为1,剩下全为0

与非门:两个1为0,剩下全为1

或门:只要有1,就为1

异或:相同为0,不同为1

2.3感知机的实现

感知机可以实现与门、与非门、或门三种逻 辑电路

2.4 感知机的局限性

2.4.1 异或门

2.4.2 线性和非线性

曲线分割而成的空间称为 非线性空间,由直线分割而成的空间称为线性空间。

2.5 多层感知机

在这里插入图片描述

2.7 小结

• 感知机是具有输入和输出的算法。给定一个输入后,将输出一个既 定的值。

• 感知机将权重和偏置设定为参数。

• 使用感知机可以表示与门和或门等逻辑电路。

• 异或门无法通过单层感知机来表示。

• 使用2层感知机可以表示异或门。

• 单层感知机只能表示线性空间,而多层感知机可以表示非线性空间。

• 多层感知机(在理论上)可以表示计算机。

第三章 神经网络

3.1 从感知机到神经网络

3.1.1 神经网络的例子

在这里插入图片描述

网络一共由 3层神经元构成,但实质上只有 2层神经 元有权重,因此将其称为“2层网络”。请注意,有的书也会根据 构成网络的层数,把图 3-1的网络称为“3层网络”。本书将根据 实质上拥有权重的层数(输入层、隐藏层、输出层的总数减去 1 后的数量)来表示网络的名称

3.1.2 复习感知机

y = h(b + w1x1 + w2x2)

在这里插入图片描述

3.1.3 激活函数登场

刚才登场的h(x)函数会将输入信号的总和转换为输出信号,这种函数 一般称为激活函数

a = b + w1x1 + w2x2

y = h(a)

在这里插入图片描述

3.2 激活函数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值