深度学习
感知机
2.1感知机是什么
2.2简单逻辑电路
2.2.1 与门、与非、或
与门:两个1为1,剩下全为0
与非门:两个1为0,剩下全为1
或门:只要有1,就为1
异或:相同为0,不同为1
2.3感知机的实现
感知机可以实现与门、与非门、或门三种逻 辑电路
2.4 感知机的局限性
2.4.1 异或门
2.4.2 线性和非线性
曲线分割而成的空间称为 非线性空间,由直线分割而成的空间称为线性空间。
2.5 多层感知机
2.7 小结
• 感知机是具有输入和输出的算法。给定一个输入后,将输出一个既 定的值。
• 感知机将权重和偏置设定为参数。
• 使用感知机可以表示与门和或门等逻辑电路。
• 异或门无法通过单层感知机来表示。
• 使用2层感知机可以表示异或门。
• 单层感知机只能表示线性空间,而多层感知机可以表示非线性空间。
• 多层感知机(在理论上)可以表示计算机。
第三章 神经网络
3.1 从感知机到神经网络
3.1.1 神经网络的例子
网络一共由 3层神经元构成,但实质上只有 2层神经 元有权重,因此将其称为“2层网络”。请注意,有的书也会根据 构成网络的层数,把图 3-1的网络称为“3层网络”。本书将根据 实质上拥有权重的层数(输入层、隐藏层、输出层的总数减去 1 后的数量)来表示网络的名称
3.1.2 复习感知机
y = h(b + w1x1 + w2x2)
3.1.3 激活函数登场
刚才登场的h(x)函数会将输入信号的总和转换为输出信号,这种函数 一般称为激活函数
a = b + w1x1 + w2x2
y = h(a)