nerf训练自己的数据,过程记录十分详细

       之前跑很多项目没有记录,后来再弄就不行了。这次特别记录一下,在梳理流程的同时希望给大家带来小小的帮助!我自己是在cuda11.2,windows环境下成功的,过程十分详细,有需要的朋友耐心看完。有问题可以评论区交流

        首先,本文nerf是基于pytorch训练的,代码来源于yenchenlin大佬,GitHub地址:GitHub - yenchenlin/nerf-pytorch: A PyTorch implementation of NeRF (Neural Radiance Fields) that reproduces the results.

 一、配置nerf环境      

         在每弄一个新项目之前,建议创建一个新的环境,本文利用conda命令创建名为nerf的环境,指令如下:


   
   
  1. conda create --name nerf -y python= 3.8 #创建名为nerf的环境
  2. conda activate nerf #切换到nerf环境

        然后安装需要的库,都在nerf代码文件的requirements.txt里


   
   
  1. cd nerf-pytorch #进入到你nerf的文件夹,根据自己的文件位置调整
  2. python -m pip install --upgrade pip #升级一下pip,防止莫名其妙的错误
  3. pip install -r requirements.txt #安装需要的库

        结束之后建议测试一下pytorch是否为GPU版本,有时候默认安装会装成CPU版本,用以下代码测试,输出版本号和True则没有问题。否则卸载安装的torch版本,用wheel离线安装。


   
   
  1. import torch
  2. print(torch.__version__)
  3. print(torch.cuda.is_available())

        然后先用作者提供的数据跑一下nerf,保证环境没有问题。这里如果用的是windows系统,需要下载Gitbash来使用linux的命令,先在代码文件夹下下载数据:

bash download_example_data.sh #下载作者提供的数据
   
   

        结束后在data文件夹下有个名为nerf_example_data的压缩包,解压后在nerf代码文件夹下使用如下命令开始训练:

python run_nerf.py --config configs/fern.txt
   
   

二、创建llff格式的数据集                           

       接下来的步骤请务必注意文件夹的命名,未打括号说明则最好按照我的名字命名,然后注意是在哪个文件夹下操作的,否则后面训练可能找不到对应文件而报错!  

        先在nerf_llff_data文件夹下创建一个自己的数据文件夹,我命名为llfftest(这个名字可以自取),接着在llfftest文件夹下创建名为images的文件夹,将拍摄的图片放置到此文件夹,下面给出我的示例:

        接着需要下载COLMAP软件,(地址:Release 3.8 · colmap/colmap · GitHub),拉到最下面选择cuda版本:

下载解压后打开COLMAP.bat文件得到以下界面:

然后点击File,选择New Project,继续点击new,在llfftest文件夹下手动输入文件名database.db后,点击保存:

 接着点击Select,选择保存图片的那个images文件夹,点击Save:

接下来点击File右边的Processing,选择Feature extraction,出现如下界面,只需要配置第一个选项,然后点击下面Extract。

结束后点击关闭,接着点击Processing下的Feature matching,直接run即可,然后等待匹配结束。

结束后点击Processing旁边的Reconstruction,选择Start Reconstruction,等待结束。。。

结束后,点击File,选择Export model,这里一定注意不要直接保存,需要新建两个文件夹,名字很重要,请跟我保持一致! 

完成后检查一下文件下的东西:

接下来,将获取的位姿等数据转化为llff格式,需要下载llff脚本,(地址:GitHub - Fyusion/LLFF: Code release for Local Light Field Fusion at SIGGRAPH 2019

为了防止库冲突和报错,我又创建了名为llff的环境,将此项目需要的库进行安装,方法跟创建nerf环境是一样的


   
   
  1. conda create --name llff -y python= 3.8 
  2. conda activate llff 
  3. pip install -r requirements.txt  #在llff代码文件夹下运行

然后在此环境和llff代码文件夹下运行python imgs2poses.py (红框部分改为自己的文件路径):  

结束后就能在llfftest下得到一个.npy文件:

三、训练自己的nerf

        首先在nerf代码中,我们要在config文件夹下创建我们自己的配置文件,只需要将config文件夹下的fern复制一份,名字改为llftest,datadir后面也改成llftest即可

然后就可以在nerf环境和nerf代码下开始训练啦,(建议用Gitbash运行):

python run_nerf.py --config configs/llfftest.txt
   
   

效果如下: 

最后,如果你在训练时遇到

Mismatch between imgs 0 and poses 55 !!!!
Traceback (most recent call last):
File "run_nerf.py", line 878, in <module>
train()
File "run_nerf.py", line 544, in train
spherify=args.spherify)
File "C:\Users\HP\Desktop\nerf-pytorch-master\load_llff.py", line 246, in load_llff_data
poses, bds, imgs = _load_data(basedir, factor=factor) # factor=8 downsamples original imgs by 8x
TypeError: cannot unpack non-iterable NoneType object

可能是因为函数不兼容,解决方法是,在llfftest文件夹下新建一个images_8的文件夹,将八倍下采样的图片放到这。

下采样代码我也放出来,注意更改自己的路径:


   
   
  1. import cv2
  2. # import def_Gaussian as dg
  3. # import time
  4. import os.path
  5. # import glob
  6. #####################################################################################################################
  7. # 读取文件夹里面的图像数量 并返回filenum
  8. def countFile( dir):
  9. # 输入文件夹
  10. tmp = 0
  11. for item in os.listdir( dir):
  12. if os.path.isfile(os.path.join( dir, item)):
  13. tmp += 1
  14. else:
  15. tmp += countFile(os.path.join( dir, item))
  16. return tmp
  17. filenum = countFile( "C:\\Users\\HP\\Desktop\\nerf-pytorch-master\\data\\nerf_llff_data\\llfftest\\images") # 返回的是图片的张数
  18. print(filenum)
  19. # filenum
  20. n = 8
  21. index = 1 # 保存图片编号
  22. num = 0 # 处理图片计数
  23. for i in range( 1, filenum + 1):
  24. ########################################################
  25. # 1.读取原始图片
  26. if index < 10:
  27. filename = "C:\\Users\\HP\\Desktop\\nerf-pytorch-master\\data\\nerf_llff_data\\llfftest\\images\\" + str(i) + ".jpg"
  28. elif index < 100:
  29. filename = "C:\\Users\\HP\\Desktop\\nerf-pytorch-master\\data\\nerf_llff_data\\llfftest\\images\\" + str(i) + ".jpg"
  30. else:
  31. filename = "C:\\Users\\HP\\Desktop\\nerf-pytorch-master\\data\\nerf_llff_data\\llfftest\\images\\" + str(i) + ".jpg"
  32. print(filename)
  33. original_image = cv2.imread(filename)
  34. # 2.下采样
  35. if n == 4:
  36. img_1 = cv2.pyrDown(original_image)
  37. img_1 = cv2.pyrDown(img_1)
  38. if n == 8:
  39. img_1 = cv2.pyrDown(original_image)
  40. img_1 = cv2.pyrDown(img_1)
  41. img_1 = cv2.pyrDown(img_1)
  42. # 3.将下采样图片保存到指定路径当中
  43. if index < 10:
  44. cv2.imwrite( "C:\\Users\\HP\\Desktop\\nerf-pytorch-master\\data\\nerf_llff_data\\llfftest\\images_8\\" + str(index) + ".jpg", img_1)
  45. elif index < 100:
  46. cv2.imwrite( "C:\\Users\\HP\\Desktop\\nerf-pytorch-master\\data\\nerf_llff_data\\llfftest\\images_8\\" + str(index) + ".jpg", img_1)
  47. else:
  48. cv2.imwrite( "C:\\Users\\HP\\Desktop\\nerf-pytorch-master\\data\\nerf_llff_data\\llfftest\\images_8\\" + str(index) + ".jpg", img_1)
  49. num = num + 1
  50. print( "正在为第" + str(num) + "图片采样......")
  51. index = index + 1

最后的最后,本来是准备让大家看看我的结果的,但视频插入不了,那就祝各位小伙伴顺利吧。遇到什么奇奇怪怪的问题欢迎评论区讨论交流!

NERF(Neural Radiance Fields)是一种用于三维物体重建和渲染的深度学习模型。要训练自己的数据集,你可以按照以下步骤进行操作: 1. 收集数据集:首先,你需要收集与你想要重建和渲染的物体相关的数据。这些数据可以是从不同角度拍摄的图像或点云数据。 2. 数据预处理:对于图像数据,你可以使用图像处理技术,如裁剪、缩放和归一化,以便将它们调整为相同的尺寸和格式。对于点云数据,你可以使用相应的点云处理库进行预处理。 3. 构建训练集和测试集:将数据集划分为训练集和测试集。通常,大部分数据用于训练,少部分用于评估模型的性能。 4. 标注数据:对于每个数据样本,你需要为其提供相应的标签。对于NERF来说,标签可能是与每个点或像素相关的三维位置和颜色值。 5. 模型训练:使用标注的数据训练NERF模型。你可以使用深度学习框架(如PyTorch或TensorFlow)来实现和训练模型。在训练过程中,你可以使用各种优化算法和损失函数,来优化模型以适应你的数据集。 6. 模型评估和调优:使用测试集对训练好的模型进行评估。根据评估结果,你可以调整模型的超参数、网络结构等,以提高模型的性能。 7. 使用模型进行预测:一旦模型训练完成,你可以使用它来预测新样本的三维形状和渲染。根据你的需求,你可以将模型集成到相关应用程序中。 请注意,NERF是一种复杂的模型,需要大量的数据和计算资源来训练和运行。同时,确保你的数据集具有多样性和代表性,以获得更好的模型泛化能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值