导读:在当今数据驱动决策的时代,企业内部数据的准确性、一致性和可比性至关重要。指标标准化作为数据管理领域的关键环节,正逐渐成为企业提升运营效率、优化战略规划以及增强市场竞争力的核心要素。
指标标准化的背景与意义
随着企业规模的扩大和业务的多元化发展,数据来源日益广泛,数据量呈爆炸式增长。不同部门、不同业务系统所产生的数据往往缺乏统一的规范和标准,导致在数据整合与分析过程中面临诸多困境。例如,销售部门和财务部门对于 “销售额” 这一指标的定义可能存在细微差异,一个可能包含了某些折扣后的金额,而另一个则是原始订单金额,这种差异会使得管理层在综合评估企业销售业绩时产生偏差,进而影响决策的科学性和准确性。
常见的指标交付流程如下:DS或运营提出指标需求、数据BP或数据产品梳理确认指标口径、数仓工程师进行 ETL 开发。最终交付的指标会被应用到下游的各个数据产品中,比如管理驾驶舱、BI 报表以及分析工具。
指标标准化通过建立一套统一、明确且严谨的指标定义、计算方法和数据来源规则,有效解决指标指标同名不同数,数据口径差异等问题。能够确保企业内部各个层级、各个部门在使用和理解数据时达成共识,避免因指标歧义而引发的沟通障碍和决策失误。
- 数据资产沉淀:指标标准化管理可以将大量的企业数据以业务理解的指标形式沉淀,发挥数据资源的最大价值,让数据资源真正成为数据资产,发挥企业提升效益作用。
- 业务精细化运营:企业运营过程中,需要对各个环节进⾏数据化和指标化的业务量化,指标管理确保精细化运营管理的各个环节,提升业务运营的效率和效果,提⾼业务的精细化管理。
- 企业经营全局管理:企业经营管理本质上就是基于指标的量化管理,指标管理使得经营管理变得可描述、可度量、可拆解,为企业全局发展保驾护航
指标的基本要求及交付策略
数仓交付的指标必须满足准确性、实效性以及一致性的要求。同时,在指标交付的过程中,需要兼顾指标管理的效率。对于指标相关要求的交付策略如下:
一、准确性
这是最根本的一条原则。这个准确有二个层面的意思,一是数据指标在技术实现过程中,是准确的,不会出现代码逻辑写错,源数据取错。二是统计源数据的源头的数据是对的!一个公司数据收集与记录的准确、完整也一定是一个持续迭代的工程。
- 开发环节:通过测试中心进行指标数据的测试验收;通过配置数据质量规则监控指标新增分区的产出情况。
- 应用环节:通过配置指标监控监测数据异动。
二、实效性
数据分析指标的及时性要求各级指标数据提供的时间需要符合决策者和各级数据应用者使用数据的要求,以保证数据的时效性和应用有效性。
- 开发环节:在指标的生产任务上关联对应的SLA基线,通过基线的智能预警,配合平台的稳定性保障措施,保证指标的及时产出。
- 应用环节:根据指标等级进行分级保障,不同等级的指标挂靠不同级别的基线,通过基线倒推保障下游数据的及时产出。
三、一致性
一致性也包含两个层面意思,一是定义一致性:在企业内部,同一数据指标的定义必须保持一致。无论是在不同的部门之间,还是在不同的业务系统中,相同的数据指标应该具有相同的含义、计算方法和数据来源;当企业进行业务拓展或系统升级时,也要确保数据指标的定义不会发生变化,除非有明确的业务需求和经过严格的定义变更流程。二是数据更新一致性:数据指标的数据更新频率和时间点应该保持一致;对于数据指标所依赖的数据存储系统,要保证数据更新的一致性。
四、管理效率
我们在一致性原则中提到同一数据指标的定义必须保持一致。无论是在不同的部门之间,还是在不同的业务系统中,相同的数据指标应该具有相同的含义、计算方法和数据来源。对于管理效率层面来说,我们标准指标体系的开发最好基于统一的一站式数据开发平台进行指标的开发与管理,当然如果消费环节也能基于一个平台那最好不过,当指标应用于其他数据产品中时也应该保持与指标平台中统一的指标口径
指标标准化实践步骤
指标定义标准化建设的整体架构分为三个部分:
- 指标定义标准化:基于指标管理工具,进行指标的标准化定义以及流程管控。
- 指标实现逻辑化:通过逻辑模型隔离指标生产和消费,提升物理模型可复用性,保障指标交付质量。
- 指标消费统一化:基于指标维度的统一查询 DSL,降低下游消费门槛,通过接入统一查询服务,保障指标口径一致性,通过数据虚拟化技术增强 OLAP 的分析能力,提升取数灵活性。
一、指标梳理与定义
首先,企业需要对现有的各类指标进行全面梳理,包括财务指标、运营指标、市场指标等。这一过程中,要深入各业务部门了解指标的实际使用场景、用途以及其在业务流程中的角色。
在梳理完成后,为每个指标制定清晰、精确且唯一的定义。定义应涵盖指标的名称、业务含义、计算逻辑、数据来源系统或数据库表以及适用范围等关键要素。以电商企业为例,对于 “客户转化率” 指标,明确其名称为 “客户转化率”,业务含义是衡量网站访客转化为实际购买客户的比例,计算逻辑为一定时期内购买客户数量除以网站访客数量,数据来源为网站流量分析系统和订单管理系统,适用范围为整个电商业务的营销效果评估。再如一家连锁餐饮企业的 “平均客单价” 指标,其定义为在特定时间段内,所有门店的总销售额除以总顾客消费次数,数据从收银系统中提取,用于分析顾客的消费能力和菜品定价策略的合理性。
二、指标分类与分层
根据指标的性质、业务领域和数据粒度等因素,对指标进行合理分类与分层。常见的分类方式有
1、按照业务功能分为销售类指标、财务类指标、人力资源类指标等;
2、按照数据层级分为原子指标、派生指标和复合指标。原子指标是不可再细分的基础指标,有的也叫基础指标:对应于物理表上的某个或某些字段,如 “订单数量”“员工人数” 等;派生指标,也叫计算指标,是基于原子指标通过一定的计算规则或维度组合而成,如 “平均订单金额”(订单总金额 / 订单数量);复合指标则是由多个派生指标或原子指标进一步组合计算得到,用于综合评估某个业务领域的整体绩效,如 “销售业绩综合评分”。
三、维度分类与管理
提到指标必须要谈到维度,维度也就是看数据的角度是指标构成的关键,通常可以划分为四种维度类型:
- 维表维度(正常维度):对应于一张维表,维表包含唯一的主键以及其他的维度属性,譬如城市维度。
- 枚举维度:用来描述可枚举的 k-v 键值对,譬如业务线维度,key 是业务线 ID,value 是业务线名称。
- 退化维度:某些场景下,一些维度在不同的物理表上有不同的计算逻辑,但代表的是同一个维度。退化维度主要用于解决这种场景。
- 衍生维度:和退化维度类似,区别在于衍生维度的计算逻辑比较通用,可以进行集中化管理。
基于四种维度类型可以构建逻辑维度,用于描述维度间的关联关系,通过逻辑维度可以构建数仓的雪花模型。
四、维度、指标标准化流程建议
为确保指标标准化的持续有效实施,企业需要建立一套完善的指标管理规范与流程。除了对指标维度的定义规范进行标准化之外,还需要对指标维度的录入流程进行标准化,这包括指标的新增、修改、删除流程以及指标的审核与发布机制。
建立专门的指标管理系统或利用现有的数据管理平台来支持指标标准化工作。指标管理系统应具备指标定义与维护功能、指标版本管理功能、指标数据查询与报表生成功能以及与其他业务系统的数据交互接口等。通过系统的应用,可以实现指标标准化工作的信息化管理,提高工作效率和管理精度,方便企业内部人员对指标的查询、使用和共享。
- 将 DS 提指标需求、数据 BP 录入指标、数据开发交付指标的流程进行线上化。
- 对指标的变更流程进行强管控,当指标口径发生变更时,所有下游指标会自动级联变更,并通知到所有的下游应用。
为了规范指标在下游的安全使用,构建了完善的指标权限体系,包括指标权限以及行级权限。指标权限对应于指标的列权限,拥有指标权限才能使用指标。行级权限主要控制指标的数据可见范围,比如某个大区运营只能看到该大区下的指标数据。
为了防止平台上录入无用指标导致指标泛滥,需要进行常态化的指标维度治理。
- 在看清方面,构建了从基础指标、时间周期、修饰词到基础指标,基础指标和维度到计算指标和复合指标的全链路血源。
- 在治理措施方面,针对长期未使用的指标维度,会自动进入废弃状态,针对公共的指标维度,支持跨业务板块引用和管理。
综上所述,基于指标维度的标准化定义规范以及流程管控,确保指标定义标准化。通过配合常态化的指标维度治理,达到长期的指标定义标准化。
指标标准化实践中的挑战与应对
一、业务部门的协同与沟通
指标标准化涉及企业多个业务部门的协作与配合,不同部门由于业务视角和利益诉求的差异,可能对指标标准化工作存在抵触情绪或在指标定义和应用上存在分歧。例如,销售部门可能更关注销售业绩指标的灵活性和即时性,而财务部门则强调指标的准确性和合规性。
为应对这一挑战,企业需要加强跨部门的沟通与协调机制。通过组织定期的指标标准化工作会议、培训与宣贯活动,让各部门充分了解指标标准化的意义和目标,提高部门间的共识和协作意愿。同时,在指标定义和流程制定过程中,充分征求各业务部门的意见和建议,确保指标能够兼顾各部门的业务需求,实现多方共赢。
二、数据质量与系统兼容性
企业在数据收集和存储过程中可能存在数据质量问题,如数据不完整、不准确、数据格式不一致等,这些问题会影响指标标准化的实施效果。此外,企业内部不同业务系统的技术架构和数据格式可能存在差异,导致数据整合和指标计算过程中出现系统兼容性问题。
针对数据质量问题,企业需要建立完善的数据质量管理体系,包括数据质量监控、数据质量评估和数据质量改进机制。通过数据质量工具对数据进行定期检查和清洗,及时发现和纠正数据质量缺陷。例如,一家零售企业发现其库存管理系统中的商品库存数据存在数据缺失现象,通过数据质量监控工具发现后,及时补充缺失数据,并优化数据录入流程,以防止类似问题再次发生。对于系统兼容性问题,在进行数据整合和系统建设时,充分考虑各业务系统的技术特点和数据接口规范,采用标准化的数据交换格式和中间件技术,确保数据能够在不同系统之间顺畅流转和准确计算。
三、指标的动态更新与适应性
市场环境和企业业务是不断变化的,指标体系也需要随之进行动态更新和调整,以保持其适应性和有效性。然而,频繁的指标更新可能会给企业内部人员带来学习和适应的压力,同时也可能影响数据的历史可比性。
为解决这一问题,企业在指标标准化过程中应建立前瞻性的指标体系设计理念,预留一定的灵活性和扩展性。在指标定义时,考虑到可能的业务变化因素,采用参数化的定义方式或建立指标的关联关系模型,以便在业务变化时能够快速调整指标计算逻辑而无需大规模修改指标体系。例如,一家科技企业的 “市场占有率” 指标,在定义时考虑到不同产品线和不同市场区域的情况,采用参数化设置,当企业推出新产品线或进入新市场区域时,只需调整相应参数即可更新指标计算。同时,加强对指标更新的管理和沟通,及时向企业内部人员提供指标更新的培训和指导,帮助他们理解和适应新的指标体系。
指标标准化实践是企业数据管理领域的一项长期而艰巨的任务,但通过科学合理的方法和坚持不懈的努力,企业能够构建起一套完善的指标标准化体系,从而充分发挥数据的价值,为企业的可持续发展提供有力保障。
派可数据一站式企业级 BI 可视化指标管理平台
"零代码数据仓库" + "可视化自助分析"
众多央企、国企、500 强企业、上市公司的选择