前缀平均值

数列的前缀平均值(prefix average)问题:

给定存储n个double型浮点数的数组X,要计算数组A,其中A[i]为元素X[0],…, X[i]的平均值(i=0,…,n-1)
(1<=n<=1000000),即
在这里插入图片描述

前缀平均值在经济学和统计学中广泛应用。

例如,给定一个基金的年回报,投资者想要知道前一年、前三年、前五年以及前十年奖金的年度平均回报。
前缀平均值还可以用作某一快速变化的参数的“平滑”函数。

已知长度为n的X[i]序列(i=0,…,n-1),求长度为n的前缀平均值序列A[i] (i=0,…,n-1)。试设计一种求
前缀平均值的算法,使得算法的平均运行时间为O(n)。

注意:这里,要求设计的算法运行时间是O(n),而非直接通过公式计算的O(n^2)。

输入格式

分两行:
第一行仅一个数,为n,表示接下来有n个浮点数。(n<=1000000)
第二行共有n个double型浮点数,为原始数X[0] … X[n-1]

输出格式

仅一行共有n个平均值,为前缀平均值A[0] … A[n-1]

格式:每个数值仅保留小数点后两位输出,数值之间空格相连。

输入样例

3
0.125126 56.3585 19.3304

输出样例

0.13 28.24 25.27

分析:

这道题比较简单,直接挂代码了

#include <iostream>
#include <vector>
#include <iomanip>

using namespace std;

int main() {
	int number;
	cin >> number;
	vector<double> array(number);
	vector<double> array_aver(number);
	double temp;
	for (int i = 0; i < number; i++) {
		cin >> temp;
		array[i] = temp;
	}
	array_aver[0] = array[0];
	for (int i = 1; i < number; i++) {
		array_aver[i] = (i * array_aver[i - 1] + array[i]) / (i + 1);
	}

	for (int i = 0; i < number; i++) {
		cout << fixed << setprecision(2) << array_aver[i] << " ";
	}
	return 0;
}
几何平均数最大子数组的问题可以通过使用前缀积来解决。前缀积是指给定一个长度为n的数组arr,其前缀积数组prod为prod[i] = arr[0]*arr[1]*...*arr[i-1]*arr[i],其中prod[0]=1。接下来,我们可以使用滑动窗口算法来找到长度为k的子数组,其几何平均数最大。 具体而言,我们可以使用两个指针i和j,分别表示子数组的左右端点。然后,我们将j移动到第k个位置,并计算窗口内元素的几何平均数。接着,我们将i指针向右移动,直到保证窗口大小为k为止。在每个i和j的组合中,我们可以计算出当前窗口内元素的几何平均数,并将其与现有最大值进行比较。如果当前几何平均数大于先前的最大值,则将其更新为最大值。 C++代码示例如下: ``` #include <iostream> #include <cmath> using namespace std; double findMaxGeoMean(int arr[], int n, int k) { double maxGeoMean = 0.0; double prod = 1.0; int i = 0, j = 0; while (j < k) { prod *= arr[j]; j++; } maxGeoMean = pow(prod, 1.0 / k); while (j < n) { prod *= arr[j]; prod /= arr[i]; maxGeoMean = max(maxGeoMean, pow(prod, 1.0 / k)); i++; j++; } return maxGeoMean; } int main() { int arr[] = { 1, 2, 3, 4, 5 }; int n = sizeof(arr) / sizeof(arr[0]); int k = 3; double maxGeoMean = findMaxGeoMean(arr, n, k); cout << "The maximum geometric mean is " << maxGeoMean << endl; return 0; } ``` 总结: 几何平均数最大子数组问题可以通过滑动窗口算法前缀积来解决。我们可以使用两个指针来遍历数组。在每一个窗口中,我们可以计算出当前窗口内元素的几何平均数,并将其与现有最大值进行比较。如果当前几何平均数大于先前的最大值,则将其更新为最大值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值