高斯分布及其极大似然估计

高斯分布及其极大似然估计

高斯分布

一维高斯分布

一维高斯分布的概率密度函数为:
N ( μ , σ 2 ) = 1 2 π σ exp ⁡ ( − ( x − μ ) 2 2 σ 2 ) N(\mu,\sigma^2)=\frac{1}{\sqrt{2\pi}\sigma}\exp(-\frac{(x-\mu)^2}{2\sigma^2}) N(μ,σ2)=2π σ1exp(2σ2(xμ)2)
多维高斯分布

D D D 维高斯分布的概率密度函数为:
N ( μ , Σ ) = 1 ( 2 π D 2 ∣ Σ ∣ 1 2 ) exp ⁡ ( − ( x − μ ) 2 Σ − 1 ( x − μ ) 2 ) N(\mu,\Sigma)=\frac{1}{(2\pi^{\frac{D}{2}}|\Sigma|^{\frac{1}{2}})}\exp(-\frac{(x-\mu)^2\Sigma^{-1}(x-\mu)}{2}) N(μ,Σ)=(2π2D∣Σ21)1exp(2(xμ)2Σ1(xμ))

极大似然估计

贝叶斯公式

贝叶斯公式如下:
P ( θ ∣ X ) = P ( X ∣ θ ) P ( θ ) P ( X ) P(\theta|X)=\frac{P(X|\theta)P(\theta)}{P(X)} P(θX)=P(X)P(Xθ)P(θ)
其中, P ( X ∣ θ ) P(X|\theta) P(Xθ) 称为后验概率, P ( θ ) P(\theta) P(θ) 称为先验概率, P ( θ ∣ X ) P(\theta|X) P(θX) 成为似然函数。所谓极大似然估计,即使要让似然函数 P ( θ ∣ X ) P(\theta|X) P(θX) 取到最大,估计此时参数 θ \theta θ 的值。详见:先验、后验、似然

高斯分布的极大似然估计

假设我们有 N N N 个观测数据 X = ( x 1 , x 2 , … , x N ) X=(x_1,x_2,\dots,x_N) X=(x1,x2,,xN) ,每个样本点是 D D D 维的,则我们的数据是一个 N × D N\times D N×D 的矩阵。而我们要估计的参数就是多维高斯分布中的均值 μ \mu μ 和协方差矩阵 Σ \Sigma Σ

这里我们以一维高斯分布为例进行推导。即每个样本点 x i x_i xi 是一维的,而我们要估计的是一维高斯分布的均值 μ \mu μ 和方差 σ 2 \sigma^2 σ2 ,即 θ = ( μ , σ 2 ) \theta=(\mu,\sigma^2) θ=(μ,σ2)

下面我们用极大似然估计来估计这两个参数:
θ ^ M L E = arg ⁡ max ⁡ θ L ( θ ) \hat{\theta}_{MLE}=\arg\max_\theta\mathcal{L(\theta)} θ^MLE=argθmaxL(θ)
为了方便计算,我们通常优化对数似然,有:
L ( θ ) = log ⁡ P ( X ∣ θ ) = log ⁡ ∏ i = 1 N P ( x i ∣ θ ) = ∑ i = 1 N log ⁡ P ( x i ∣ θ ) = ∑ i = 1 N log ⁡ 1 2 π σ exp ⁡ ( ( x i − μ ) 2 2 σ 2 ) = ∑ i = 1 N [ log ⁡ 1 2 π + log ⁡ 1 σ − ( x i − μ ) 2 2 σ 2 ] \begin{align} \mathcal{L}(\theta)&=\log P(X|\theta)\\ &=\log \prod_{i=1}^NP(x_i|\theta)\\ &=\sum_{i=1}^N\log P(x_i|\theta)\\ &=\sum_{i=1}^N\log \frac{1}{\sqrt{2\pi}\sigma}\exp(\frac{(x_i-\mu)^2}{2\sigma^2})\\ &=\sum_{i=1}^N[\log \frac{1}{\sqrt{2\pi}}+\log \frac{1}{\sigma}-\frac{(x_i-\mu)^2}{2\sigma^2}]\\ \end{align} L(θ)=logP(Xθ)=logi=1NP(xiθ)=i=1NlogP(xiθ)=i=1Nlog2π σ1exp(2σ2(xiμ)2)=i=1N[log2π 1+logσ12σ2(xiμ)2]
并且可以丢掉其中的常数项,则最终的优化目标:
θ ^ M L E = arg ⁡ max ⁡ θ ∑ i = 1 N [ log ⁡ 1 σ − ( x i − μ ) 2 2 σ 2 ] \hat{\theta}_{MLE}=\arg\max_\theta\sum_{i=1}^N[\log \frac{1}{\sigma}-\frac{(x_i-\mu)^2}{2\sigma^2}]\\ θ^MLE=argθmaxi=1N[logσ12σ2(xiμ)2]
接下来我们分别对 μ \mu μ σ 2 \sigma^2 σ2 求偏导,并令其等于零,得到估计值。

对于 μ \mu μ
μ ^ M L E = arg ⁡ max ⁡ μ ∑ i = 1 N [ − ( x i − μ ) 2 2 σ 2 ] = arg ⁡ min ⁡ μ ∑ i = 1 N ( x i − μ ) 2 \begin{align} \hat{\mu}_{MLE}&=\arg\max_{\mu}{\sum_{i=1}^N[-\frac{(x_i-\mu)^2}{2\sigma^2}]}\\ &=\arg\min_\mu\sum_{i=1}^N(x_i-\mu)^2 \end{align} μ^MLE=argμmaxi=1N[2σ2(xiμ)2]=argμmini=1N(xiμ)2
求偏导:
∂ ∑ i = 1 N ( x i − μ ) 2 ∂ μ = ∑ i = 1 N − 2 × ( x i − μ ) ≜ 0 \frac{\partial\sum_{i=1}^N(x_i-\mu)^2}{\partial\mu}=\sum_{i=1}^N-2\times(x_i-\mu)\triangleq0 μi=1N(xiμ)2=i=1N2×(xiμ)0
得到:
μ ^ M L E = 1 N ∑ i = 1 N x i \hat{\mu}_{MLE}=\frac{1}{N}\sum_{i=1}^Nx_i μ^MLE=N1i=1Nxi
对于 σ 2 \sigma^2 σ2
σ 2 ^ = arg ⁡ max ⁡ σ 2 ∑ i = 1 N [ log ⁡ 1 σ − ( x i − μ ) 2 2 σ 2 ] = arg ⁡ max ⁡ σ 2 L σ 2 \hat{\sigma^2}=\arg\max_{\sigma^2}\sum_{i=1}^N[\log \frac{1}{\sigma}-\frac{(x_i-\mu)^2}{2\sigma^2}]=\arg\max_{\sigma^2}\mathcal{L}_{\sigma^2} σ2^=argσ2maxi=1N[logσ12σ2(xiμ)2]=argσ2maxLσ2
求偏导:
∂ L σ 2 ∂ σ = ∑ i = 1 N [ − 1 σ − 1 2 ( x i − μ ) × ( − 2 ) ] ≜ 0 ∑ i = 1 N [ − σ 2 + ( x i − μ ) 2 ] ≜ 0 ∑ i = 1 N σ 2 = ∑ i = 1 N ( x i − μ ) 2 \frac{\partial{\mathcal{L}_{\sigma^2}}}{\partial{\sigma}}=\sum_{i=1}^N[-\frac{1}{\sigma}-\frac{1}{2}(x_i-\mu)\times(-2)]\triangleq0\\ \sum_{i=1}^N[-\sigma^2+(x_i-\mu)^2]\triangleq0\\ \sum_{i=1}^N\sigma^2=\sum_{i=1}^N(x_i-\mu)^2 σLσ2=i=1N[σ121(xiμ)×(2)]0i=1N[σ2+(xiμ)2]0i=1Nσ2=i=1N(xiμ)2
得到:
σ 2 ^ M L E = 1 N ∑ i = 1 N ( x i − μ ^ M L E ) 2 \hat{\sigma^2}_{MLE}=\frac{1}{N}\sum_{i=1}^N(x_i-\hat{\mu}_{MLE})^2 σ2^MLE=N1i=1N(xiμ^MLE)2

有偏估计和无偏估计

有偏估计(biased estimate)是指由样本值求得的估计值与待估参数的真值之间有系统误差,其期望值不是待估参数的真值

在统计学中,估计量的偏差(或偏差函数)是此估计量的期望值与估计参数的真值之差。偏差为零的估计量或决策规则称为无偏的。否则该估计量是有偏的。在统计学中,“偏差”是一个函数的客观陈述。

我们分别计算 μ ^ M L E \hat{\mu}_{MLE} μ^MLE σ 2 ^ M L E \hat{\sigma^2}_{MLE} σ2^MLE ,来考察这两个估计值是否是无偏的。

对于 μ ^ M L E \hat{\mu}_{MLE} μ^MLE
E [ μ ^ M L E ] = E [ 1 N ∑ i = 1 N x i ] = 1 N ∑ i = 1 N E x i = μ E[\hat{\mu}_{MLE}]=E[\frac{1}{N}\sum_{i=1}^Nx_i]=\frac{1}{N}\sum_{i=1}^NEx_i=\mu E[μ^MLE]=E[N1i=1Nxi]=N1i=1NExi=μ
可以看到, μ ^ M L E \hat{\mu}_{MLE} μ^MLE 的期望就等于真值 μ \mu μ ,所以它是无偏估计。

对于 σ 2 ^ M L E \hat{\sigma^2}_{MLE} σ2^MLE
σ 2 ^ M L E = 1 N ∑ i = 1 N ( x i − μ ^ M L E ) 2 = 1 N ∑ i = 1 N ( x i 2 − 2 × x i × μ ^ M L E + μ ^ M L E 2 ) = 1 N ∑ i = 1 N ( x i 2 − 2 μ ^ M L E 2 + μ ^ M L E 2 ) = 1 N ∑ i = 1 N ( x i 2 − μ ^ M L E 2 ) \begin{align} \hat{\sigma^2}_{MLE}&=\frac{1}{N}\sum_{i=1}^N(x_i-\hat{\mu}_{MLE})^2\\ &=\frac{1}{N}\sum_{i=1}^N(x_i^2-2\times x_i\times \hat{\mu}_{MLE}+\hat{\mu}_{MLE}^2)\\ &=\frac{1}{N}\sum_{i=1}^N(x_i^2-2\hat{\mu}_{MLE}^2+\hat{\mu}_{MLE}^2)\\ &=\frac{1}{N}\sum_{i=1}^N(x_i^2-\hat{\mu}_{MLE}^2) \end{align} σ2^MLE=N1i=1N(xiμ^MLE)2=N1i=1N(xi22×xi×μ^MLE+μ^MLE2)=N1i=1N(xi22μ^MLE2+μ^MLE2)=N1i=1N(xi2μ^MLE2)
求期望:
E [ σ 2 ^ M L E ] = E [ 1 N ∑ i = 1 N ( x i 2 − μ ^ M L E 2 ) ] = E [ 1 N ∑ i = 1 N ( ( x i 2 − μ 2 ) − ( μ ^ M L E 2 − μ 2 ) ) ] = E [ 1 N ∑ i = 1 N ( x i 2 − μ 2 ) ] − E [ 1 N ∑ i = 1 N ( μ ^ M L E 2 − μ 2 ) ] = 1 N ∑ i = 1 N E ( x i 2 − μ 2 ) − 1 N ∑ i = 1 N E ( μ ^ M L E 2 − μ 2 ) = 1 N ∑ i = 1 N [ E ( x i 2 ) − E ( μ 2 ) ] − 1 N ∑ i = 1 N E ( μ ^ M L E 2 ) − E ( μ 2 ) = 1 N ∑ i = 1 N [ E ( x i 2 ) − μ 2 ] − 1 N ∑ i = 1 N [ E ( μ ^ M L E 2 ) − μ 2 ] = 1 N ∑ i = 1 N [ E ( x i 2 ) − ( E x i ) 2 ] − 1 N ∑ i = 1 N [ E ( μ ^ M L E 2 ) − E μ ^ M L E 2 ] = 1 N ∑ i = 1 N V a r ( x i ) − 1 N ∑ i = 1 N V a r ( μ ^ M L E ) = 1 N ∑ i = 1 N σ 2 − 1 N ∑ i = 1 N σ 2 N = N − 1 N σ 2 \begin{align} E[\hat{\sigma^2}_{MLE}]&=E[\frac{1}{N}\sum_{i=1}^N(x_i^2-\hat{\mu}_{MLE}^2)]\\ &=E[\frac{1}{N}\sum_{i=1}^N((x_i^2-\mu^2)-(\hat{\mu}_{MLE}^2-\mu^2))]\\ &=E[\frac{1}{N}\sum_{i=1}^N(x_i^2-\mu^2)]-E[\frac{1}{N}\sum_{i=1}^N(\hat{\mu}_{MLE}^2-\mu^2)]\\ &=\frac{1}{N}\sum_{i=1}^NE(x_i^2-\mu^2)-\frac{1}{N}\sum_{i=1}^NE(\hat{\mu}_{MLE}^2-\mu^2)\\ &=\frac{1}{N}\sum_{i=1}^N[E(x_i^2)-E(\mu^2)]-\frac{1}{N}\sum_{i=1}^NE(\hat{\mu}_{MLE}^2)-E(\mu^2)\\ &=\frac{1}{N}\sum_{i=1}^N[E(x_i^2)-\mu^2]-\frac{1}{N}\sum_{i=1}^N[E(\hat{\mu}_{MLE}^2)-\mu^2]\\ &=\frac{1}{N}\sum_{i=1}^N[E(x_i^2)-(Ex_i)^2]-\frac{1}{N}\sum_{i=1}^N[E(\hat{\mu}_{MLE}^2)-E\hat{\mu}_{MLE}^2]\\ &=\frac{1}{N}\sum_{i=1}^NVar(x_i)-\frac{1}{N}\sum_{i=1}^NVar(\hat{\mu}_{MLE})\\ &=\frac{1}{N}\sum_{i=1}^N\sigma^2-\frac{1}{N}\sum_{i=1}^N\frac{\sigma^2}{N}\\ &=\frac{N-1}{N}\sigma^2 \end{align} E[σ2^MLE]=E[N1i=1N(xi2μ^MLE2)]=E[N1i=1N((xi2μ2)(μ^MLE2μ2))]=E[N1i=1N(xi2μ2)]E[N1i=1N(μ^MLE2μ2)]=N1i=1NE(xi2μ2)N1i=1NE(μ^MLE2μ2)=N1i=1N[E(xi2)E(μ2)]N1i=1NE(μ^MLE2)E(μ2)=N1i=1N[E(xi2)μ2]N1i=1N[E(μ^MLE2)μ2]=N1i=1N[E(xi2)(Exi)2]N1i=1N[E(μ^MLE2)Eμ^MLE2]=N1i=1NVar(xi)N1i=1NVar(μ^MLE)=N1i=1Nσ2N1i=1NNσ2=NN1σ2
其中 V a r ( μ ^ M L E ) = V a r ( 1 N ∑ i = 1 N x i ) = 1 N 2 ∑ i = 1 N V a r ( x i ) = σ 2 N Var(\hat\mu_{MLE})=Var(\frac{1}{N}\sum_{i=1}^Nx_i)=\frac{1}{N^2}\sum_{i=1}^NVar(x_i)=\frac{\sigma^2}{N} Var(μ^MLE)=Var(N1i=1Nxi)=N21i=1NVar(xi)=Nσ2

因此, σ 2 ^ M L E \hat{\sigma^2}_{MLE} σ2^MLE 的期望不等于其真值 σ 2 \sigma^2 σ2 ,而且是会估计的偏小。无偏估计应为 1 N − 1 ∑ i = 1 N ( x i − μ ^ M L E ) \frac{1}{N-1}\sum_{i=1}^N(x_i-\hat\mu_{MLE}) N11i=1N(xiμ^MLE)

Ref

  1. 机器学习白板推导
  2. 先验、后验、似然
  3. 百度百科-有偏估计
  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值