全面理解Stable Diffusion采样器

全面理解Stable Diffusion采样器

原文:Stable Diffusion Samplers: A Comprehensive Guide

在 AUTOMATIC1111 的 SD webui 中,有许多采样器(sampler),如 Euler a,Heun,DDIM,… 什么是采样器?他们如何工作?他们之间的区别是什么?我们应该用哪种采样器?本文将带给你答案。

什么是采样?

在生成图片时,Stable Diffusion 会先在隐层空间(latent space)中生成一张完全的噪声图。噪声预测器会预测图片的噪声,将预测出的噪声从图片中减去,就完成了一步。重复该过程,最终将会得到清晰的图片。

由于 Stable Diffusion 在每一步都会产生一个新的图像样本,因此去噪的过程被也被称为采样。采样过程所使用的方法被称为采样方法或采样器。

在这里插入图片描述

采样器负责执行去噪步

采样只是 Stable Diffusion 模型中的一部分。如果想理解完整的 Stable DIffusion,推荐阅读 How does Stable Diffusion work?

下面是一个采样过程的动态展示,采样器逐渐地产生越来越干净、清晰的图像。

在这里插入图片描述

每一步去噪之后的图像动态展示

虽然整体框架是相同的,但是有许多不同的方法来执行具体的去噪过程。这通常需要速度和准确度之间两相权衡。

Noise Schedule

我们已经介绍过,在 Stable Diffusion 中,噪声图像是每步减去模型预测出的噪声,一点一点变成干净图像的。noise schedule 就是用来控制在每个采样步中噪声的强度的。噪声在第一步最大,慢慢降低,直到最后一步降为0。

在每一步中,采样器的工作就是根据 noise schedule 中对应的该步的噪声强度,减去对应的噪声,来产生该步的去噪图像。如果我们增大采样步数会有什么影响呢?每一步噪声下降的会更少,这有助于减少采样过程中的截断误差。

下面是 15 步和 30 步的 noise schedule 的对比。

总步数1530
noise schedule在这里插入图片描述在这里插入图片描述

采样器总览

到本文写作时,SD webui 共支持 19 中采样器,而且随着时间的推移越来越多。那么,不同的采样器之间有何区别呢?

目前为止,SD webui 支持的采样器:

Euler a、Euler、LMS、Heun、DPM2、DPM2 a、DPM++ 2S a、DPM++2M、DPM++ SDE、DPM fast、DPM adaptive、LMS Karras、DPM2 Karras、DPM2 a、Karras、DPM++2S a Karras、DPM++ 2M Karras、DPM++ SDE Karras、DDIM、PLMS。

本文后半部分会详细介绍,技术上细节很多。所以这里先提供一个总览的视角,帮助大家对各种采样器有一个大致的了解。

Old-School ODE Solvers

我们先来看最简单的一类,这些采样器中的发明时间都已经超过一百年了,它们是就老式的常微分方程(ODE)求解器(solver)。

  • Euler:最简单的求解器;
  • Heun:比 Euler 更准确,但也更慢
  • LMS(Linear Multi-Step method):和 Euler 一样快,但(应该会)更准确

Ancestor Samplers

你是否注意到某些采样器名字里带了一个字母 a

  • Euler a
  • DPM2 a
  • DPM++ 2S a
  • DPM++ 2S a Karras

他们就是祖先采样器。祖先采样器会在每个采样步对图像添加噪声。祖先采样器都是随机(stochastic)采样器,因为他们的采样结果具有随机性。但是,注意也有其他的名字中不带 a 随机采样器。

祖先采样器有一个缺点,就是其采样结果图片不会收敛。以下是 Euler 和 Euler a 的采样过程对比:

采样器Euler 采样结果收敛Euler a 采样结果不收敛
采样过程实例在这里插入图片描述在这里插入图片描述

可以看到,Euler a 的采样结果不收敛,而 Euler 的采样结果收敛得很好。考虑到可复现性,我们通常更喜欢可以收敛的结果。当然,如果想要稍微有些变化,可以使用 variational seed

Karras noise schedule

名字中带有 Karras 的采样器,是使用了 Karras 的论文中推荐的 noise schedule。如果仔细观察可以发现,Karras 推荐的 noise schedule 中,接近终点附近的的几步值会更小,他们发现这种策略会有更好的生图质量。

在这里插入图片描述

默认noise schedule与Karras noise schedule的对比

DDIM和PLMS

DDIM (Denoising Diffusion Implicit Model) 和 PLMS (Pseudo Linear Multi-Step method) 是 SDv1 带的两种采样器。DDIM 是第一批转为扩散模型设计的采样器之一,而 PLMS 是 DDIM 更新、更快的版本。

这两种采样器现在看来已经有些过时了,一般不再广泛使用。

DPM和DPM++

DPM (Diffusion probabilistic model solver) and DPM++ 是一系列发布于 2022 年的新型扩散模型采样器。他们代表了一些具有类似结构的求解器。

DPM 和 DPM2 很类似,但是 DPM2 是二阶的,更准确但是更慢。

DPM++ 是 DPM 的优化版本。

DPM adaptive 可以自适应地调整每一步的值。它可能会非常慢,因为他并不确保扩散过程在某个确定的采样步数内能完成。

UniPC

UniPC (Unified Predictor-Corrector) 是一种发布于 2023 年的新型采样器。灵感来自于 ODE 求解器中的 predictor-corrector 方法,可以在 5-10 步采样出高质量的图片。

k-diffusion

最后,你可能听说过 k-diffusion 并好奇这是什么东西。它其实就是指 Katherine Crowson 的 GitHub 仓库: k-diffusion,该仓库实现了 Karras 论文中提到的诸多采样器。

实际上,SD webui 中除了 DDIM、PLMS 和 UniPC 外的其他所有采样器都是使用的 k-diffusion 仓库的实现。

评估采样器

如何选择采样器?本节将会进行一些客观的对比,来帮助你选择。

Image Convergence

本小节将会使用不同的采样器生成相同的图片,最大采样步数为 40。在第 40 步的最后一张图片将作为参考,来评估采样器收敛的速度。Euler 将作为参照。

Euler, DDIM, PLMS, LMS Karras and Heun

首先我们看一下 Euler, DDIM, PLMS, LMS Karras and Heun 这几个采样器,他们是老式的 ODE 求解器或者是扩散模型原始的求解器。

可以看到,DDIM 与 Euler 的收敛步数差不多,但是变动更大,这是因为 DDIM 会在采样步中注入随机噪声。

PLMS 在本次测试中表现不佳,收敛性最差。

Heun 收敛得很快,但采样速度实际要慢两倍,因为它是一种二阶的方法。所以我们应该对比 Heun 第 30 步的结果与 Euler 第 15 步的基准结果。

在这里插入图片描述

Euler, DDIM, PLMS, LMS Karras and Heun 采样结果收敛性对比 (越低越好)

Ancestral Samplers

如果你的目标是产生稳定、可复现的采样结果,那么你不应该使用祖先采样器。因为他们都带有随机性,且不会收敛。

在这里插入图片描述

祖先采样器均无法收敛

DPM and DPM2

在 DPM 系列采样器中,DPM fast 无法很好地收敛,DPM2 和 DPM2 Karras 的收敛性看起来比 Euler 要好,但别忘了,它们也是二阶的方法,速度要慢两倍。

DPM adaptive 看起来很好,但他是用的自己的自适应步数,实际可能非常慢。

在这里插入图片描述

DPM++ Solvers

DPM++ SDE 和 DPM++ SDE Karras 与祖先采样器有相同的问题,他们不仅不收敛,而且随着步数的变化,图片质量也会波动。

DPM++ 2M and DPM++ 2M Karras 收敛性不错。 在步数足够大时,Karras 的策略会收敛得很快。

在这里插入图片描述

UniPC

UniPC 收敛得比 Euler 稍慢,但也还不错。

在这里插入图片描述

Speed

虽然前面看到,DPM adaptive 收敛性很不错,但速度这里可以明显看到他是最慢的。

除了 DPM adaptive 外,可以看到剩下的采样器分为了两组。分别差不多是一倍时间和两倍时间。这反映出的是求解器的阶次,一阶求解器更快,二阶求解器更准确,但是速度要慢两倍,因为需要过两遍去噪 UNet 模型。

在这里插入图片描述

Quality

当然,如果生成图片的质量看起来很矬,收敛性和速度都没有意义。以下是不同采样器结果的对比:

采样器采样结果
Euler、Heun、DDIM在这里插入图片描述
PLMS、LMS Karras、Euler a在这里插入图片描述
DPM2、DPM2 a、DPM2 a Karras在这里插入图片描述
DPM2 Karras、DPM++ 2M Karras、DPM++ 2S a Karras在这里插入图片描述
DPM++ 2S a、DPM++ adaptive、DPM++ fast在这里插入图片描述
DPM++ SDE、Karras、DPM++ SDE、UniPC在这里插入图片描述

从结果来看,DPM++ fast 是明显质量稍差的。另外,各个祖先采样器没有收敛到其他采样器收敛的结果。祖先采样器收到一致 kitten,而其他采样器收敛到一只 cat。

生成结果的主观感知这里没有明显的哪个比哪个好,自己看着好就行。

Perceptual Quality

即使没有收敛,生成图像的质量也可能已经不错了。这节我们看一下各个采样器需要多少步能够得到高质量的生成结果。

这里我们采用的指标是 BRISQUE (Blind/Referenceless Image Spatial Quality Evaluator),它反映了自然图像的质量,数值越低,图像质量越高。

在第一组中,DDIM 这里表现得出乎意料的好,只需要 8 步,就生成了质量最高的图像。

在这里插入图片描述

第二组对比的是祖先采样器的结果,除了一两个例外之外,大多数祖先采样器的质量与 Euler类似。

在这里插入图片描述

DPM2 采样器系列比 Euler 稍好。

在这里插入图片描述

在本节的生成质量对比中,DPM++ SDE and DPM++ SDE Karras 的表现最好。

在这里插入图片描述

UniPC 在小步数时比 Euler 稍差,在大步数时差不多。

在这里插入图片描述

So … which one is the best

在对比了各个采样器在多个维度的表现之后,推荐如下:

  1. 如果想要速度快、收敛性好、质量也不错,且想试试新东西的话,最好选择:
    • DPM++ 2M Karras、20-30 步
    • UniPC、20-30 步
  2. 如果想要比较好的质量,同时不在意是否收敛的话,可以选择:
    • DPM++ SDE Karras、10-15 步 (注意该采样器比较慢)
    • DDIM、10-15 步
  3. 如果想要稳定、可复现的结果,不要用任何带有随机性的采样器,比如祖先采样器
  4. 如果想生成一些简单的结果,可以用 Euler 或 Heun。在使用 Heun 时,可以调低一些步数来节省时间。

采样器简介

SD webui 中有各种采样器的相关信息。这些采样器的内部工作原理需要大量数学知识来理解。这里将详细解释一下最简单的 Euler,简略介绍其他采样器,它们也与 Euler 有许多共通点、

Euler

Euler 可能是最直接的采样器,其数学本质就是用于解决常微分方程的欧拉方法。Euler 采样器是完全确定的,也就是说,在采样过程中不会引入任何的随机噪声。

以下是逐步拆解采样过程:

  1. 第一步:在隐层空间中,噪声预测器估计出图像中的噪声
  2. 第二步:根据 noise schedule,计算出需要被减掉的噪声系数,这在每一步是不同的
  3. 第三步:将第一步的噪声与第二步的系数乘起来,从隐层图片中减掉的该噪声量

重复上述步骤,直到 noise schedule 结束。

但是我们怎么知道每一步的噪声系数应该是多少呢?实际上,这就是我们需要告诉采样器的 noise schedule。

noise schedule 告诉采样器每一步的噪声应该是多少。噪声预测器根据应该存在的噪声总量来估计隐层图像中的噪声。

在这里插入图片描述

在第一步的噪声量是最高的,然后噪声会随着步数的增加不断降低,直到在最后一步降至 0。改变采样步数,就会对应的改变 noise schedule。比如我们增大采样步数,那么每一步噪声下降的会更少,这有助于减少采样过程中的截断误差。

为什么确定性的 ODE 求解器能够求解随机采样问题呢?这称为概率流(probability flow),我们不是解决样本如何演化(evolve),而是解决其概率分布的演化。也就是说,求解随机过程中的概率分布而不是样本轨迹。

与漂移过程(drift process)对照,ODE 求解器的对应关系如下:

  • Time → noise
  • Time quantization → noise schedule
  • Position → latent image
  • Velocity → Predicted noise
  • Initial position → Initial random latent image
  • Final position → Final clear latent image

采样示例

下面是使用 Euler 采样进行文生图的一个示例。noise schedule 指示了每一步中的噪声强度。采样器的工作就是在每一步中,根据 noise schedule 的设定,和 UNet 噪声预测网络的输出,从噪声图中减掉适量的噪声,直到最终噪声为 0。

在这里插入图片描述

Euler a

Euler ancestral (Euler a) 采样器与 Euler 采样器类似。区别在于,Euler a 会在每一步减掉更多的噪声,然后它会在采样一些随机噪声加回到噪声图中,这样与 noise schedule 中设定的噪声强度匹配。Euler a 中的去噪图与之前的步数中加入了什么样的噪声有关,因此它被称为祖先采样器(ancestral sampler )。由于在过程中加入了额外的噪声,所以祖先采样器两次的采样结果会是不同的。

DDIM

Denoising Diffusion Implicit Models (DDIM) 是最先被提出的扩散模型采样器之一。它的核心想法是每一步的图片可以通过添加以下三个东西来近似:

  1. 最终的图片
  2. 图像方向指向当前步骤的图像
  3. 随机噪声

可是在抵达最后一步之前,我们怎么知道最终的图片呢?DDIM 采样器是使用去噪图片来对最终图片进行估计。类似的,图片的方向也是通过噪声预测器预测出的噪声来近似。

LMS and LMS Karras

与 Euler 方法类似,linear multistep method (LMS) 方法也是用于解决 ODE 的一种标准方法。他通过巧妙利用之前时间步的值来提升准确度。SD webui 默认使用至多前 4 步的值。

LMS Karras 使用了 Karras 的 noise schedule。

Heun

Heun’s method 比 Euler 方法更准确,但是它在每步需要预测两次噪声,所以它比 Euler 慢两倍。

DPM Solvers

Diffusion Probabilistic Model Solvers (DPM-Solvers) 是一系列新提出的扩散模型求解器。在 SD webui 中,包含以下几种:DPM2,DPM2 Karras,DPM2 a,DPM2 a Karras,DPM Fast,DPM adaptive,DPM Karras。

DPM2 就是 DPM-Solver 论文中的 DPM-Solver-2 (Algorithm 1),是一种精确到二阶求解器。

DPM2 Karras 和 DPM2 基本相同,但是使用了 Karras 的 noise schedule。

DPM2 a 也与 DPM2 基本相同,但是作为一种祖先采样器,它在每一步添加了额外的噪声。

DPM2 a Karras 是在 DPM2 a 的基础上再使用了 Karras 的 noise schedule。

DPM Fast 的 noise schedule 是均匀的。它精确到一阶,比 DPM2 系列快两倍。

DPM adaptive 也是一阶的 DPM Solver,其 noise schedule 是自适应的,它会无视我们设置的去噪步数,并自适应地自行决定步数。

DPM++ 采样器是 DPM 的优化版本。

UniPC

UniPC (Unified Predictor Corrector method) 是 2023 年新提出的一种采样器。它包含两部分:

  • Unified predictor (UniP)
  • Unified corrector (UniC)

它支持任何求解器,任何噪声预测器。

延伸阅读

  • 18
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Stable Diffusion(稳定扩散)是一种用于生成高质量文本的语言模型。它是由CSDN开发的C知道 AI团队开发的一种基于GPT的模型。Stable Diffusion模型通过对大量的文本数据进行预训练,学习到了丰富的语言知识和语义理解能力。它可以用于各种自然语言处理任务,如文本生成、对话系统、机器翻译等。 Stable Diffusion模型的核心是一个深度神经网络,它由多个Transformer模块组成。这些Transformer模块可以有效地捕捉文本中的上下文信息,并生成连贯、有逻辑的文本。Stable Diffusion模型还引入了一种称为Diffusion Mechanism(扩散机制)的技术,用于控制生成文本的稳定性和一致性。 与传统的基于规则或统计方法的文本生成模型相比,Stable Diffusion模型具有以下优势: 1. 生成文本质量高:Stable Diffusion模型通过大规模预训练学习到了丰富的语言知识,可以生成更加准确、流畅、自然的文本。 2. 上下文理解能力强:Stable Diffusion模型利用Transformer模块有效地捕捉了文本中的上下文信息,可以更好地理解和表达复杂的语义。 3. 可控性强:Stable Diffusion模型引入了Diffusion Mechanism技术,可以控制生成文本的稳定性和一致性,使得生成结果更加可控和可靠。 总之,Stable Diffusion是一种强大的语言模型,可以用于各种文本生成任务,并且具有高质量、上下文理解能力强、可控性强等优势。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值