Improved Model Structure and Unsupervised Domain Adaptation for Road-Object Segmentation from a LiD

本文详细解读SqueezeSegV2论文,探讨如何提升雷达点云数据的抗噪能力,解决类别不平衡问题,并介绍无监督领域适应训练,包括多模态反射强度生成网络、网络测量校正和渐进域校准等策略,以降低合成数据与真实数据间的分布差异影响。
摘要由CSDN通过智能技术生成

SqueezeSegV2 论文解读

Improved Model Structure and Unsupervised Domain Adaptation for Road-Object Segmentation from a LiDAR Point Cloud
在这里插入图片描述

SqueezeSegV2 网络结构

Contribution:1 提升雷达的抗噪能力 2 提出了使用合成数据训练的domain - shift pipeline

抗噪能力

显示环境下收集到的点云数据会存在缺失点的情况。缺失的点会引入dropout noise,这种噪声在网络的前几层(感受野较小)的时候影响较大,会造成一个kerner输出的failed,作者使用dropout来模拟了这个噪声

在这里插入图片描述

加入CAM前后,网络受dropout(掉点)的影响图

为了削弱这个噪声的影响,作者提出CAM模块,Structure of Context Aggregation Module.

该模块置于Conv1后面,所以输入不会有0元素,可能是通过检查dropout对网络影响的实验,试出来的网络结构。

point categories imbalanceFocal Loss

  • Problem:由于雷达扫描中,背景点数远多于前景物体点,导致前景点在训练过程中对网络的影响减小。
  • solution:

F L ( p t ) = − ( 1 − p t ) γ log ⁡ ( p t ) F L\left(p_{t}\right)=-\left(1-p_{t}\right)^{\gamma} \log \left(p_{t}\right) FL(pt)=

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FUTUREEEEEE

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值