轴承故障诊断-西储数据集-深度学习

用于轴承故障诊断的西储数据集及深度学习过程

本文参考:https://csegroups.case.edu/bearingdatacenter/pages/welcome-case-western-reserve-university-bearing-data-center-website

作者在做轴承故障诊断深度学习时深感西储数据集下载的难度,借此上传一下自己下载的数据把,需要的可以自取-链接:https://pan.baidu.com/s/1OwlG21T-hGjMJUx_6lPrjA 提取码:al1l
西储数据集是轴承故障诊断的基本数据集,是由西储大学测试而得,格式为mat,主要适用于轴承故障诊断深度学习。该数据集测试使用加速度采集振动信号,通过使用磁性底座将传感器安放在电机壳体上,加速度传感器分别安装在电机壳体的驱动端12点钟的位置。振动信号是通过16通道的DAT记录器采集,并经过MATLAB处理。数字信号的采样频率为12000Hz,驱动端轴承故障数据同时也以48000Hz的采样速率采集
主要分为以下几个部分:
DE - 驱动端加速度数据
FE - 风扇端加速度数据
BA - 基本加速度数据
time - 时间序列数据
RPM- 测试转速

而每个数据又包含了轴承直径、电机转速、内圈数据、滚珠数据、外圈数据(在不同测试位置),如下图所示。
在这里插入图片描述
下面贴上我在做深度学习参考的大神的博客和代码,供你们参考:
作者是毕业设计做出的模型,介绍也比较全面-https://blog.csdn.net/zhangjiali12011/article/details/88087437
源码-https://github.com/zhangjiali1201/Keras_bearing_fault_diagnosis

阅读终点,创作起航,您可以撰写心得或摘录文章要点写篇博文。去创作
  • 28
    点赞
  • 188
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 6
    评论
以下是一维CNN在Matlab中进行轴承故障诊断的代码示例: 1. 加载数据集和必要的工具包 ```matlab load('data_200hz.mat'); % 加载数据集 addpath('Deep Learning Toolbox'); ``` 2. 数据预处理 ```matlab X = data'; % 将数据集转换为列向量 Y = categorical(repmat([1 2 3 4],1,10)); % 为每个类别(正常、内圈故障、外圈故障、滚动体故障)分配类别标签 Y = Y'; % 将数据集分为训练集和测试集 [trainInd,testInd] = dividerand(length(Y),0.7,0.3); XTrain = X(trainInd,:); YTrain = Y(trainInd,:); XTest = X(testInd,:); YTest = Y(testInd,:); ``` 3. 构建CNN模型 ```matlab inputSize = 512; % 输入信号长度 numFilters = 32; % 卷积层滤波器数量 filterSize = 20; % 卷积层滤波器长度 numClasses = 4; % 类别数量 layers = [ sequenceInputLayer(inputSize) convolution1dLayer(filterSize,numFilters,'Padding','same') batchNormalizationLayer reluLayer maxPooling1dLayer(2,'Stride',2) convolution1dLayer(filterSize,numFilters,'Padding','same') batchNormalizationLayer reluLayer maxPooling1dLayer(2,'Stride',2) convolution1dLayer(filterSize,numFilters,'Padding','same') batchNormalizationLayer reluLayer maxPooling1dLayer(2,'Stride',2) convolution1dLayer(filterSize,numFilters,'Padding','same') batchNormalizationLayer reluLayer maxPooling1dLayer(2,'Stride',2) fullyConnectedLayer(numClasses) softmaxLayer classificationLayer]; options = trainingOptions('sgdm', ... 'InitialLearnRate',0.01, ... 'MaxEpochs',50, ... 'MiniBatchSize',10, ... 'Shuffle','every-epoch', ... 'ValidationData',{XTest,YTest}, ... 'ValidationFrequency',50, ... 'Verbose',false, ... 'Plots','training-progress'); net = trainNetwork(XTrain,YTrain,layers,options); % 训练模型 ``` 4. 模型测试 ```matlab YPred = classify(net,XTest); % 对测试数据进行分类 accuracy = sum(YPred == YTest)/numel(YTest); % 计算分类准确率 ``` 这是一个基本的一维CNN模型代码示例,你可以根据自己的需要进行修改和优化。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Light_Laser

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值