【机器学习】分类问题与逻辑回归 [理论与代码实现]

理论部分

理解参考博客:逻辑回归的本质

假设函数hθ:

在这里插入图片描述
g(z)称为S型函数或逻辑函数(“Sigmoid Function,” also called the “Logistic Function”),图形如下:
在这里插入图片描述
这个假设函数hθ的含义是:输入x和参数θ后,y=1的概率。概率论上的数学表达式是:
在这里插入图片描述

损失函数:

在这里插入图片描述
这个Cost我们刚开始肯定想的是和线性回归一样,用误差平方和来当代价函数:在这里插入图片描述
但是他的图像是这样的(左图):
在这里插入图片描述
这样的话梯度下降就找不到全局最低点,我们希望的图像应该是右边这样的。
于是我们就找其他的Cost的表达式,根据极大似然估计(还没学到,这里先占个坑),得出下面的Cost表达式:
在这里插入图片描述

将两个cost写在一起得到:
在这里插入图片描述
把这个cost表达式代入上面的Jθ,得到最终的损失函数的表达式:
在这里插入图片描述
这个式子的向量形式表示为:(写出这个形式是为了好编代码)
在这里插入图片描述

梯度下降:

还记得线性回归时候用的梯度下降是:
在这里插入图片描述
这里使用同样的形式,把Jθ代入上面的这个式子,求偏导之后得到:
在这里插入图片描述
向量形式为:
在这里插入图片描述

代码部分

初始参数设置

import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt

#显示中文(根据自己电脑设置)
plt.rcParams['font.sans-serif'] = ['SimHei']
#显示负数
plt.rcParams['axes.unicode_minus'] = False

导入数据

data = np.genfromtxt('data1.txt',delimiter=',')
print(data[:5])
x,y = data[:,:-1],data[:,-1]

数据样式(前五行):
在这里插入图片描述

数据预处理

#数据预处理

def preProcess(x,y):
    #标准化特征缩放
    x-=np.mean(x,axis = 0)
    x/=np.std(x,axis=0,ddof=1)
    #ddof eans Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements. By default ddof is zero.
    
    #在x前加上一列1  方便代码中的矩阵操作
    x = np.c_[np.ones(len(x)),x]
    y = np.c_[y]
    #np.c_是按行连接两个矩阵,就是把两矩阵左右相加,要求行数相等。
    return x,y

x,y = preProcess(x,y)

p.s. 这里的数据处理会直接使x和y发生改变,在稍后绘制决策边界的时候,不能直接使用这里的xy,而应该使用‘导入数据’模块里的原始数据。

定义函数

#定义模型

def model(x, theta):
    z = np.dot(x,theta)
    return 1/(1+np.exp(-z))

#损失函数

def costFunc(h,y):
    m = len(y)
    J = 1.0/m*np.sum(-np.dot(y.T,np.log(h))-np.dot((1-y).T,np.log(1-h)))
    # J = (-1.0/m)*np.sum(y*np.log(h)+(1-y)*np.log(1-h))
    return J

# 梯度下降

alpha = 0.01
iter_num = 20000

def graDesc(x,y,alpha,iter_num):
    m,n = x.shape

    #n行1列theta参数
    theta = np.zeros((n,1))
    #初始化代价值
    J_history = np.zeros(iter_num)

    #迭代更新
    for i in range(iter_num):
        h = model(x,theta)
        J_history[i] = costFunc(h,y)
        #梯度下降算法,更新θ
        deletaTheta = 1.0/m*np.dot(x.T,h-y)
        theta-=alpha*deletaTheta
    return J_history,theta

跑起来

#调用函数
J_history,theta = graDesc(x,y,alpha,iter_num)
#得出预测值
h = model(x,theta)

画图

损失函数图

plt.title("cost function chart")
plt.plot(range(iter_num),J_history)
plt.xlabel('迭代次数')
plt.ylabel('cost')
plt.show()

在这里插入图片描述

决策边界曲线图

def plotDescisionBoundary(X,y,theta):
    # 补充画当前样本散点图的代码
# 分类决策面 theta0+theta1*x1+theta2*x2 = 0


    pos = np.where(y == 1)
    #pos是y中数据等于1的下标索引
    # print(pos)
    neg = np.where(y==0)
    #neg是y中数据等于0的下标索引
    # print(neg)


    x1 = np.arange(min(X[:, 1]), max(X[:, 1]), 0.1)
    x2 = -(theta[1]*x1+theta[0])/theta[2]
    plt.plot(x1,x2)
    #python中数据可视化函数scatter(数据的横坐标向量,数据的纵坐标向量,marker='0'数据以点的形式显示,c='b'数据点是blue颜色)
    plt.scatter(X[pos,0],X[pos, 1],marker='o', c='b')
    plt.scatter(X[neg,0],X[neg, 1],marker='x', c='r')
    plt.show()

plotDescisionBoundary(data[:,:-1],data[:,-1],theta)

在这里插入图片描述

检查迭代效果

这个图是我自己调参时,为了看迭代效果明显一点画的图,y轴的值为y(真实值)与h(预测值)的差,这个差离0越近,说明预测得效果越好。

plt.scatter(range(len(y)),y-h,label='预测值')
plt.plot(range(len(y)),[0 for _ in range(len(y))],label='参考线',color='red')
plt.xlabel('样本')
plt.ylabel('真实值与预测值的差值')
plt.legend()
plt.show()

在这里插入图片描述

总结

  1. 数学的欠缺让我推导公式有些困难,尤其是矩阵变换上,公式代码是照着吴恩达给的向量公式敲的,没有理解充分;
  2. 边界曲线绘制容易搞混,红点和蓝点是标签(y)==1和0时候的图,不是预测的结果,预测结果体现在决策边界(那条蓝色的直线)上;
  3. 边界曲线代码中X[pos,0],X[pos, 1]意思是标签(y)==1,然后x0和x1两个特征值。

参考

  1. 理论部分来自吴恩达Coursera视频课
  2. 代码部分参考博客
  3. 决策边界参考博客
  4. 逻辑回归的本质
  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值