离散数学学习笔记-01-基础知识

集合与序列

集合的基本概念

集合set:大写字母表示S
集合的元素:小写字母表示a, a ∈ S a \in S aS
集合的特点

  • 能够明确的判断一个元素是或不是属于某集合
  • 集合的元素没有顺序
  • 集合的元素之间不一定存在什么关系
  • 规定:对任意集合A都有 A ∉ A A \notin A A/A

特殊集合
自然数:N,整数:Z,正整数: Z + Z^+ Z+,非零整数集 Z ∗ Z^* Z,有理数集 Q Q Q,非零有理数集 Q ∗ Q^* Q,实数 R R R,非零实数集 R ∗ R^* R,复数 C C C

集合的表示

  • 外延表示法(列举法) { ⋯   } \{\cdots\} {}
  • 内涵表示法(描述法) { x ∣ P ( x ) } \{x|P(x)\} {xP(x)}

子集和超集 A ⊆ B A \subseteq B AB
A = B : A ⊆ B   a n d   B ⊆ A A = B:A \subseteq B\ and\ B \subseteq A A=B:AB and BA
全集: U U U
空集: ∅ \emptyset

基数、势cardinality:集合中的元素数 ∣ A ∣ , # A , c a r d ( A ) |A|, \#A, card(A) A,#A,card(A)
幂集(power set):A的所有子集所组成的集合, ∮ ( A ) = { x ∣ x ⊂ A } \oint(A) = \{x|x \subset A\} (A)={xxA}其中有空集和A本身

证明 X ⊆ Y X \subseteq Y XY的基本方法是:对于任意的 x ∈ X x \in X xX,有 x ∈ Y x \in Y xY
证明两个集合相等的方法是分别证明 X ⊆ Y   a n d   Y ⊆ X X \subseteq Y \ and\ Y \subseteq X XY and YX

集合的运算

  • 交集 A ⋂ B , i n t e r s e c t i o n A \bigcap B, intersection AB,intersection
  • 并集 A ⋃ B , u n i o n A \bigcup B, union AB,union
  • B关于A的相对补(complement of B with respect to A)或A与B的差集(difference): A − B = A B ‾ A - B=A\overline{B} AB=AB
  • 补集 A ‾ , ∼ A , c o m p l e m e n t \overline{A},\sim A, complement A,A,complement,A关于U的相对补
  • 对称差 A ⨁ B = { x ∣ x ∈ A   o r   x ∈ B   a n d   x ∉ A ⋂ B = ( A − B ) ⋃ ( B − A ) , s y m m e t r i c   d i f f e r e n c e A\bigoplus B = \{x|x \in A\ or\ x \in B\ and\ x \notin A\bigcap B = (A - B) \bigcup (B - A), symmetric\ difference AB={xxA or xB and x/AB=(AB)(BA),symmetric difference

集合运算的性质

  • 交换律:
    A ⋃ B = B ⋃ A A ⋂ B = B ⋂ A A ⨁ B = B ⨁ A A \bigcup B = B \bigcup A \\ A \bigcap B = B \bigcap A \\ A \bigoplus B = B \bigoplus A AB=BAAB=BAAB=BA
  • 结合律:
    ( A ⋃ B ) ⋃ C = A ⋃ ( B ⋃ C ) ( A ⋂ B ) ⋂ C = A ⋂ ( B ⋂ C ) ( A ⨁ B ) ⨁ C = A ⨁ ( B ⨁ C ) (A \bigcup B) \bigcup C = A \bigcup (B \bigcup C) \\ (A \bigcap B) \bigcap C = A \bigcap (B \bigcap C) \\ (A \bigoplus B) \bigoplus C = A \bigoplus (B \bigoplus C) (AB)C=A(BC)(AB)C=A(BC)(AB)C=A(BC)
  • 分配率:
    A ⋃ ( B ⋂ C ) = ( A ⋃ B ) ⋂ ( A ⋃ C ) A ⋂ ( B ⋃ C ) = ( A ⋂ B ) ⋃ ( A ⋂ C ) A \bigcup (B \bigcap C) = (A \bigcup B) \bigcap ( A \bigcup C) \\ A \bigcap (B \bigcup C) = (A \bigcap B) \bigcup ( A \bigcap C) A(BC)=(AB)(AC)A(BC)=(AB)(AC)
  • 吸收率:
    A ⋃ ( A ⋂ B ) = A A ⋂ ( A ⋃ B ) = A A \bigcup (A \bigcap B) = A \\ A \bigcap ( A \bigcup B) = A A(AB)=AA(AB)=A
  • 德摩根律:
    绝对形式:
    A ⋃ B ‾ = A ‾ ⋂ B ‾ A ⋂ B ‾ = A ‾ ⋃ B ‾ \overline{A \bigcup B} = \overline{A} \bigcap \overline{B} \\ \overline{A \bigcap B} = \overline{A} \bigcup \overline{B} AB=ABAB=AB
    相对形式:
    A − ( B ⋃ C ) = ( A − B ) ⋂ ( A − C ) A − ( B ⋂ C ) = ( A − B ) ⋃ ( A − C ) A - (B \bigcup C) = (A - B) \bigcap (A - C) \\ A - (B \bigcap C) = (A - B) \bigcup (A - C) A(BC)=(AB)(AC)A(BC)=(AB)(AC)
  • 幂等律:
    A ⋂ A = A A ⋃ A = A A \bigcap A = A \\ A \bigcup A = A AA=AAA=A
  • 零律:
    A ⋃ U = U A ⋂ ∅ = ∅ A \bigcup U = U\\ A \bigcap \emptyset = \emptyset AU=UA=
  • 同一律:
    A ⋂ U = A A ⋃ ∅ = A A \bigcap U = A \\ A \bigcup \emptyset = A AU=AA=A
  • 排中律:
    A ⋃ A ‾ = U A \bigcup \overline{A} = U AA=U
  • 矛盾律:
    A ⋂ A ‾ = ∅ A \bigcap \overline{A} = \emptyset AA=

序列的基本概念

  • sequence:排成一列的对象,有顺序,里面的对象为项item;
  • 对于给定的集合A, A ∗ A^* A为所有由A种元素生成的有限长度序列全体, A ∗ A^* A中的元素称为A上的词word或串string;
  • 假设 A = { a , b , c , ⋯   , z } A = \{a,b,c,\cdots,z\} A={a,b,c,,z},则 A ∗ A^* A中包括的为若干单词, A ∗ A^* A中的空序列称作空串empty string,记作 λ , ε \lambda,\varepsilon λ,ε
  • 假设A是集合, w 1 = s 1 s 2 ⋯ s n , w 2 = t 1 t 2 ⋯ t n w_1 = s_1s_2\cdots s_n,w_2 = t_1t_2\cdots t_n w1=s1s2sn,w2=t1t2tn都是 A ∗ A^* A中的元素,则 w 1 , w 2 w_1,w_2 w1,w2的连接catenation为 s 1 s 2 ⋯ s n t 1 t 2 ⋯ t n s_1s_2\cdots s_nt_1t_2\cdots t_n s1s2snt1t2tn记作 w 1 ∘ w 2 w_1 \circ w_2 w1w2

布尔矩阵

布尔矩阵boolean matrix,位矩阵bit matrix

  • A = [ a i j ] A = [a_{ij}] A=[aij]是一个 m × n m \times n m×n的布尔矩阵,则定义其补complement为 A ‾ = [ a i j ‾ ] = [ 1 − a i j ] \overline{A} = [\overline{a_{ij}}] = [1- a_{ij}] A=[aij]=[1aij]
  • A = [ a i j ] A = [a_{ij}] A=[aij] B = [ b i j ] B = [b_{ij}] B=[bij]都是 m × n m \times n m×n的布尔矩阵
    A ⋂ B A ⋃ B A \bigcap B \\ A \bigcup B ABAB
  • A = [ a i j ] A = [a_{ij}] A=[aij] m × n m \times n m×n矩阵, B = [ b i j ] B = [b_{ij}] B=[bij] n × r n \times r n×r矩阵,布尔积boolean product, A ⊙ B = C = [ c i j ] A \odot B = C = [c_{ij}] AB=C=[cij]
    c i j = { 1 若存在 k , 1 ≤ k ≤ n 使得 a i k = 1 且 b k j = 1 0 o t h e r w i s e c_{ij} = \begin{cases} 1 & 若存在k,1 \leq k \leq n 使得a_{ik} = 1且b_{kj} = 1\\ 0 & otherwise \end{cases} cij={10若存在k1kn使得aik=1bkj=1otherwise
  • 定理:
    A ⋃ B = C = [ c i j ]   c i j = a i j + b i j − a i j b i j A ⋂ B = D = [ d i j ]   d i j = a i j b i j A \bigcup B = C = [c_{ij}] \ c_{ij} = a_{ij} + b_{ij} - a_{ij}b_{ij} \\ A \bigcap B = D = [d_{ij}] \ d_{ij} = a_{ij}b_{ij} AB=C=[cij] cij=aij+bijaijbijAB=D=[dij] dij=aijbij
  • 交换律:
    A ⋂ B = B ⋂ A A ⋃ B = B ⋃ A A \bigcap B = B \bigcap A \\ A \bigcup B = B \bigcup A AB=BAAB=BA
  • 结合律:
    ( A ⋃ B ) ⋃ C = A ⋃ ( B ⋃ C ) ( A ⋂ B ) ⋂ C = A ⋂ ( B ⋂ C ) ( A ⊙ B ) ⊙ C = A ⊙ ( B ⊙ C ) (A \bigcup B) \bigcup C = A \bigcup (B \bigcup C) \\ (A \bigcap B) \bigcap C = A \bigcap (B \bigcap C) \\ (A \odot B) \odot C = A \odot (B \odot C) (AB)C=A(BC)(AB)C=A(BC)(AB)C=A(BC)
  • 分配率:
    A ⋂ ( B ⋃ C ) = ( A ⋂ B ) ⋃ ( A ⋂ C ) A ⋃ ( B ⋂ C ) = ( A ⋃ B ) ⋂ ( A ⋃ C ) ( A ⋃ B ) T = A T ⋃ B T ( A ⋂ B ) T = A T ⋂ B T ( A ⊙ B ) T = B T ⊙ A T A \bigcap (B \bigcup C) = (A \bigcap B) \bigcup (A \bigcap C) \\ A \bigcup (B \bigcap C) = (A \bigcup B) \bigcap (A \bigcup C) \\ (A \bigcup B)^T = A^T \bigcup B^T \\ (A \bigcap B)^T = A^T \bigcap B^T \\ (A \odot B)^T = B^T \odot A^T \\ A(BC)=(AB)(AC)A(BC)=(AB)(AC)(AB)T=ATBT(AB)T=ATBT(AB)T=BTAT
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值