离散数学学习笔记-02-对偶和范式

对偶式

dual,假设A为仅含有 ∼ , ⋁ , ⋀ \sim,\bigvee,\bigwedge ,,的命题公式,若将 A A A中的 ⋀ \bigwedge 换成 ⋁ \bigvee ⋁ \bigvee 换成 ⋀ \bigwedge ,若包含 F F F T T T则相互取代,即得 A ∗ A^* A A A A的对偶式。 ( A ∗ ) ∗ = A (A^*)^* = A (A)=A

  • 定理1:设 A A A为一个仅含有 ∼ , ⋁ , ⋀ \sim,\bigvee,\bigwedge ,,的命题公式, p 1 , p 2 , ⋯   , p n p_1,p_2,\cdots,p_n p1,p2,,pn为其命题变项,则:
    ∼ A ( p 1 , p 2 , ⋯   , p n ) ≡ A ∗ ( ∼ p 1 , ∼ p 2 , ⋯   , ∼ p n ) \sim A(p_1,p_2,\cdots,p_n) \equiv A^*(\sim p_1, \sim p_2,\cdots,\sim p_n) A(p1,p2,,pn)A(p1,p2,,pn)
    A A A为重言式,则 A ∗ A^* A必为矛盾式
  • 定理2:设 A A A B B B为仅含联结词 ∼ , ⋁ , ⋀ \sim,\bigvee,\bigwedge ,,的命题公式,若 A ≡ B A \equiv B AB,则 A ∗ ≡ B ∗ A^* \equiv B^* AB

析取范式与合取范式

基础概念

  • 文字:literal, p , ∼ p p,\sim p p,p p p p ∼ p \sim p p称为互补对
  • 析取式:fundamental disjunction有限个文字的析取组成的公式
  • 合取式:fundamental conjunction有限个文字的合取组成的公式
  • 析取范式:disjunction normal form, A 1 ⋁ A 2 ⋁ ⋯ ⋁ A n A_1 \bigvee A_2 \bigvee \cdots \bigvee A_n A1A2An A 1 , A 2 , ⋯   , A n A_1,A_2,\cdots,A_n A1,A2,,An为合取式,n个合取式的析取称为析取范式
  • 合取范式:conjunction normal form, A 1 ⋀ A 2 ⋀ ⋯ ⋀ A n A_1 \bigwedge A_2 \bigwedge \cdots \bigwedge A_n A1A2An A 1 , A 2 , ⋯   , A n A_1,A_2,\cdots,A_n A1,A2,,An为析取式,n个析取式的合取称为合取范式
  • 定理:任何析取范式的对偶式为合取范式,任何合取范式的对偶式为析取范式,设 B B B A ∗ A^* A的析取范式,则 B ∗ B^* B A A A的合取范式

求范式的步骤:

  • ⇒ , ⇔ \Rightarrow,\Leftrightarrow ,联结词转换为 ∼ , ⋁ , ⋀ \sim,\bigvee,\bigwedge ,,
    p ⇒ q ≡ ∼ p ⋁ q p ⇔ q ≡ ( ∼ p ⋁ q ) ⋀ ( ∼ q ⋁ p ) 求合取范式 p ⇔ q ≡ ( p ⋀ q ) ⋁ ( ∼ p ⋀ ∼ q ) 求析取范式 p \Rightarrow q \equiv \sim{p} \bigvee q \\ p \Leftrightarrow q \equiv (\sim p \bigvee q) \bigwedge (\sim q \bigvee p)求合取范式 \\ p \Leftrightarrow q \equiv (p \bigwedge q) \bigvee (\sim p \bigwedge \sim q)求析取范式 pq≡∼pqpq(pq)(qp)求合取范式pq(pq)(pq)求析取范式
  • 简化 ∼ \sim ,使 ∼ \sim 仅作用于命题变式
  • 利用分配率,使其最终变为合取范式或析取范式

范式存在定理

任一命题公式都存在着与之等值的析取范式和合取范式

极小项

minterm合取式中的命题变项中, p p p ∼ p \sim p p只存在一个, n n n个命题变项构成 2 n 2^n 2n个极小项,这些极小项仅在一种情况下为真
例:3个命题变项,8个极小项
∼ p ⋀ ∼ q ⋀ ∼ r 000 − 0 m 0 ∼ p ⋀ ∼ q ⋀ r 001 − 0 m 1 ⋮   ⋮ p ⋀ q ⋀ r 111 − 7 m 7 \begin{matrix} \sim p \bigwedge \sim q \bigwedge \sim r & 000-0 & m_0 \\ \sim p \bigwedge \sim q \bigwedge r & 001-0 & m_1 \\ \vdots &\ & \vdots \\ p \bigwedge q \bigwedge r & 111-7 & m_7 \end{matrix} pqrpqrpqr00000010 1117m0m1m7

主析取范式

full disjunctive normal form,用 ∑ \sum 表示,由极小项的析取构成的析取范式
求主析取范式的步骤:

  • A A A的一个析取范式 A ′ A' A
  • A ′ A' A的某合取式 B B B不含命题变项 p i p_i pi ∼ p i \sim p_i pi,则将 B B B展开成
    B ≡ B ⋀ ( p i ⋁ ∼ p i ) ≡ ( B ⋀ p i ) ⋁ ( B ⋀ ∼ p i ) B \equiv B \bigwedge (p_i \bigvee \sim p_i) \equiv (B \bigwedge p_i) \bigvee (B \bigwedge \sim p_i) BB(pipi)(Bpi)(Bpi)
  • 化简
  • 将极小项由小到大排列 m 1 ⋁ m 2 ⋁ m 5 m_1 \bigvee m_2 \bigvee m_5 m1m2m5 ∑ ( 1 , 2 , 5 ) \sum(1,2,5) (1,2,5)表示

极大项

maxterm析取式中的命题变项中, p p p ∼ p \sim p p只存在一个, n n n个命题变项构成 2 n 2^n 2n个极小项,这些极小项仅在一种情况下为假
例:3个命题变项,8个极大项
∼ p ⋁ ∼ q ⋁ ∼ r 111 − 7 M 7 ∼ p ⋁ ∼ q ⋁ r 110 − 6 M 6 ⋮   ⋮ p ⋁ q ⋁ r 000 − 0 M 0 \begin{matrix} \sim p \bigvee \sim q \bigvee \sim r & 111-7 & M_7 \\ \sim p \bigvee \sim q \bigvee r & 110-6 & M_6 \\ \vdots &\ & \vdots \\ p \bigvee q \bigvee r & 000-0 & M_0 \end{matrix} pqrpqrpqr11171106 0000M7M6M0

主合取范式

full conjunctive normal form,用 ∏ \prod 表示,由极大项的合取构成的合取范式
求主合取范式的步骤:

  • A A A的一个合取范式 A ′ A' A
  • A ′ A' A的某析取式 B B B不含命题变项 p i p_i pi ∼ p i \sim p_i pi,则将 B B B展开成
    B ≡ B ⋁ ( p i ⋀ ∼ p i ) ≡ ( B ⋁ p i ) ⋀ ( B ⋁ ∼ p i ) B \equiv B \bigvee (p_i \bigwedge \sim p_i) \equiv (B \bigvee p_i) \bigwedge (B \bigvee \sim p_i) BB(pipi)(Bpi)(Bpi)
  • 化简
  • 将极大项由小到大排列 M 1 ⋀ M 2 ⋀ M 5 M_1 \bigwedge M_2 \bigwedge M_5 M1M2M5 ∏ ( 1 , 2 , 5 ) \prod(1,2,5) (1,2,5)表示

定理:

  • 主析取范式和主合取范式是唯一的
  • 得知主析取范式和主合取范式中的任意一个都可以很快的得到另一个。
    ∑ ( 2 , 4 , 5 , 6 , 7 ) ≡ ∏ ( 0 , 1 , 3 ) \sum(2,4,5,6,7) \equiv \prod(0,1,3) (2,4,5,6,7)(0,1,3)
  • 恰由 2 n 2^n 2n个极小项构成的公式必为重言式
  • 恰由 2 n 2^n 2n个极大项构成的公式必为矛盾式

命题逻辑的推理

推理:从前提推出结论的思维过程,前提premise或称假设hypothesis是指已知的命题公式 A 1 , A 2 , ⋯   , A n A_1,A_2,\cdots,A_n A1,A2,,An,结论conclusion是从前提出发应用推理规则推出的命题公式 B B B

基本推理公式

  • 附加率: A ⇒ ( A ⋁ B ) A \Rightarrow (A \bigvee B) A(AB)
  • 化简律: ( A ⋀ B ) ⇒ A (A \bigwedge B) \Rightarrow A (AB)A
  • 前后件附加:
    ( A ⇒ B ) ⇒ ( ( A ⋁ C ) ⇒ ( B ⋁ C ) ) ( A ⇒ B ) ⇒ ( ( A ⋀ C ) ⇒ ( B ⋀ C ) ) ( A ⇒ B ) ⇒ ( ( C ⇒ A ) ⇒ ( C ⇒ B ) ) (A \Rightarrow B) \Rightarrow ((A \bigvee C) \Rightarrow (B \bigvee C)) \\ (A \Rightarrow B) \Rightarrow ((A \bigwedge C) \Rightarrow (B \bigwedge C)) \\ (A \Rightarrow B) \Rightarrow ((C \Rightarrow A) \Rightarrow (C \Rightarrow B)) \\ (AB)((AC)(BC))(AB)((AC)(BC))(AB)((CA)(CB))
  • 对偶: ( A ⇒ B ) ⇒ ( B ∗ ⇒ A ∗ ) (A \Rightarrow B) \Rightarrow (B^* \Rightarrow A^*) (AB)(BA)
  • 假言推理、分离式: ( ( A ⇒ B ) ⋀ A ) ⇒ B ((A \Rightarrow B) \bigwedge A) \Rightarrow B ((AB)A)B
  • 拒取式: ( A ⇒ B ) ⋀ ∼ B ⇒ ∼ A (A \Rightarrow B) \bigwedge \sim B \Rightarrow \sim A (AB)B⇒∼A
  • 析取三段论: ( A ⋁ B ) ⋀ ∼ B ⇒ A (A \bigvee B) \bigwedge \sim B \Rightarrow A (AB)BA
  • 假言三段论: ( A ⇒ B ) ⋀ ( B ⇒ C ) ⇒ ( A ⇒ C ) (A \Rightarrow B) \bigwedge (B \Rightarrow C) \Rightarrow (A \Rightarrow C) (AB)(BC)(AC)
  • 等价三段论: ( A ⇔ B ) ⋀ ( B ⇔ C ) ⇒ ( A ⇔ C ) (A \Leftrightarrow B) \bigwedge (B \Leftrightarrow C) \Rightarrow (A \Leftrightarrow C) (AB)(BC)(AC)
  • 构造性二难: ( A ⇒ B ) ⋀ ( C ⇒ D ) ⋀ ( A ⋁ C ) ⇒ ( B ⋁ D ) (A \Rightarrow B) \bigwedge (C \Rightarrow D) \bigwedge (A \bigvee C) \Rightarrow (B \bigvee D) (AB)(CD)(AC)(BD)
  • 构造性二难(特殊形式):
    ( A ⇒ C ) ⋀ ( B ⇒ C ) ⋀ ( A ⋁ B ) ⇒ C ( A ⇒ B ) ⋀ ( ∼ A ⇒ B ) ⇒ B (A \Rightarrow C) \bigwedge (B \Rightarrow C) \bigwedge (A \bigvee B) \Rightarrow C \\ (A \Rightarrow B) \bigwedge (\sim A \Rightarrow B) \Rightarrow B (AC)(BC)(AB)C(AB)(AB)B
  • 破坏性二难: ( A ⇒ B ) ⋀ ( C ⇒ D ) ⋀ ( ∼ B ⋁ ∼ D ) ⇒ ( ∼ A ⋁ ∼ C ) (A \Rightarrow B) \bigwedge (C \Rightarrow D) \bigwedge (\sim B \bigvee \sim D) \Rightarrow (\sim A \bigvee \sim C) (AB)(CD)(BD)(AC)

附加前提证明法additional premise

前提A,结论 C ⇒ B C \Rightarrow B CB可以转化为证明
前提A,C,结论B

归谬法(反证法)negation of conclusion

前提A,结论B可以转为证明
前提 A , ∼ B A,\sim B A,B,结论得到矛盾

归结法resolution

  • A ⋀ ∼ B A \bigwedge \sim B AB化为合取范式 C 1 ⋀ C 2 ⋀ ⋯ ⋀ C n C_1 \bigwedge C_2 \bigwedge \cdots \bigwedge C_n C1C2Cn,各个 C i C_i Ci构成子句集 S = { C 1 , C 2 , ⋯   , C n } S = \{C_1,C_2,\cdots,C_n\} S={C1,C2,,Cn}
  • 对S中的子句作归结
  • 直至归结出矛盾式
  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值