(二刷)LeetCode703.数据流中的第K大元素

设计一个找到数据流中第K大元素的类(class)。注意是排序后的第K大元素,不是第K个不同的元素。

你的 KthLargest 类需要一个同时接收整数 k 和整数数组nums 的构造器,它包含数据流中的初始元素。每次调用 KthLargest.add,返回当前数据流中第K大的元素。

题目分析:一脸懵逼,这题读不懂。数据流?数据流!add(),后来明白了,public KthLargest()是构造器,在里面进行初始化,然后呢,add()函数表示后面会新增元素,题目意思就是让我们在add()新增元素之和,如何去寻找第k大元素

public KthLargest(int k, int[] nums) {

    }
    
    public int add(int val) {

    }
}

/**
 * Your KthLargest object will be instantiated and called as such:
 * KthLargest obj = new KthLargest(k, nums);
 * int param_1 = obj.add(val);
 */

思路:运用优先队列来解决。因为优先级队列默认小顶堆,会自动把值最小的元素排在堆顶。

写法一:构造函数里面,调用add函数,将nums数组里面的元素,通过add函数,去和优先队列周旋,这样既能体现“数据流",也能避免数组为空等情况,是比较好的解决方法。

class KthLargest {

		final PriorityQueue<Integer> q;// 设一个队列
		final int k;// k不变

		public KthLargest(int k, int[] nums) {
			this.k = k;//获得k的值
			q = new PriorityQueue<>();// 初始化队列,刚开始长度为0
			//加入元素
			for (int n : nums) {
				add(n);
			}
		}

		public int add(int val) {
                //如果队列的长度<k,将val添加到队列中
			if (q.size() < k) {
				q.offer(val);
			} else if (q.peek() < val) {
                //如果队列的长度>=k
				q.poll();
				q.offer(val);
			}
			return q.peek();
		}	
}

写法二:先在构造函数里面,从数组中选出前k个最大的元素,添加到优先队列里面,然后再去add函数里面,进行比较

class KthLargest {
	PriorityQueue<Integer> pQueue;
	int k;

	public KthLargest(int k, int[] nums) {
		this.k = k;
		pQueue = new PriorityQueue<>();
		for (int i = 0; i < nums.length; i++) {
			if (pQueue.size() < k) {
				pQueue.add(nums[i]);
			} else if (nums[i] > pQueue.peek()) {
				pQueue.poll();
				pQueue.add(nums[i]);
			}
		}
	}

	public int add(int val) {
		if (pQueue.size() < k) {
			pQueue.add(val);
		} else if (pQueue.peek() < val) {
			pQueue.poll();
			pQueue.add(val);
		}

		return pQueue.peek();
	}
}

写法一比较巧妙,学习学习。

end.

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值