倒立摆建模

前言

本文利用现代控制理论方法,建立倒立摆系统模型,对系统进行分析,并且使用PID控制和状态反馈控制,使系统成为稳定系统。

系统模型建立

倒立摆是机器人学中一个非常重要的模型, 如图所示的倒立摆系统。 现在要研究外力 F 如何能使摆保持垂直的位置。
倒立摆结构
倒立摆相关参数符号和说明:

变量说明
F输入外力(N)
M小车质量(kg)
Θ摆杆旋转角度(rad)
m小球质量(kg)
x小车水平移动距离(m)
l摆杆长度(忽略摆杆质量)(m)

对小车进行受力分析:
受力分析
FN 为地面对小车的力, Flx 为杆对小车的横向力, F 为外力, Fly 为杆对小车竖
直方向的力, Mg 为小车重力。则有:
在这里插入图片描述

对摆进行受力分析:摆的受力分析

Flx 为小车对杆的横向力, Fly 为小车对杆竖直方向的力, mg 为小车重力。 根据力和力矩方程, 有:
在这里插入图片描述

联立上述公式:
在这里插入图片描述

在平衡点 Θ = 0 附近线性化,有: 𝜃 = 𝑠𝑖𝑛𝜃, 𝑐𝑜𝑠𝜃 = 1, 𝜃̇’ = 0
系统方程:
在这里插入图片描述
定义状态变量:
在这里插入图片描述

得到系统状态空间方程:
在这里插入图片描述

为方便起见,取: 𝑀 = 1 𝑘𝑔; 𝑚 = 0.1 𝑘𝑔; 𝑔 = 9.8 𝑚/𝑠2; 𝑙 = 1 𝑚;
在这里插入图片描述

系统模拟结构图如下:
在这里插入图片描述

系统能控能观性和稳定性分析

系统能控性矩阵:
在这里插入图片描述

系统完全能控。

系统能观性矩阵:在这里插入图片描述

系统完全能观。

系统矩阵 A 的特征方程:在这里插入图片描述
可得特征值: 𝜆1 = 0, 𝜆2 = 0, 𝜆3 = 2.26569, 𝜆4 = −2.26569
由特征值可见, 系统是不稳定的。

使用 PID 控制器控制系统

使用 PID 控制器控制𝜃。
由输入 F 到输出𝜃的传递函数:
在这里插入图片描述
系统不稳定。

使用 PID 控制器后系统模拟结构图:在这里插入图片描述
取 PID 的传递函数:
在这里插入图片描述
则系统传递函数:
在这里插入图片描述

系统极零点图:
在这里插入图片描述

可以看到系统所有极点都具有负实部,系统稳定。
在初始角度为 5° 的情况下,系统能控制角度到零度。在这里插入图片描述

改变输入,发现输出能对输入进行跟踪,即达到了通过 PID 控制器控制角度的目的。在这里插入图片描述

使用状态反馈控制

系统矩阵 A 的特征方程:
在这里插入图片描述

为使系统具有良好的性能, 取目标极点为:
在这里插入图片描述

期望特征多项式:
在这里插入图片描述
系统转换为能控标准Ⅰ 型的变换矩阵 Tc:在这里插入图片描述

能控标准Ⅰ 型状态反馈转移增益矩阵𝐾̅:
在这里插入图片描述

对应于系统矩阵 A,状态 x 的状态反馈转移增益矩阵 K:
在这里插入图片描述

加入状态反馈后系统状态空间方程:
在这里插入图片描述

系统矩阵的特征方程:
在这里插入图片描述

可得特征值:
在这里插入图片描述

与预期一致,系统稳定。
加入状态反馈后系统模拟结构图:
在这里插入图片描述

在初始角度 5° 的情况下, 偏离角度在很短时间内收敛到 0。
在这里插入图片描述

通过极点配置,使得系统稳定,能回到平衡点。

总结

通过对倒立摆系统建立数学模型,然后分别使用 PID 控制器控制和状态反馈控制, 实现了通过控制外力 F,进而控制摆杆角度θ的目的。
  在 PID 控制中,虽然找到了 PID 的传递函数,使得系统稳定,并且可以控制角度θ ,但寻找合适的 PID 参数的过程过于繁琐,需要花费大量时间。同时因为 PID 单输入单输出的特性, 控制过程中只用了θ , 也只控制θ ,没有利用其它状态变量,造成数据浪费。 能否对单 PID 控制器控制方法进行改进,根据状态变量间的导数关系,采用串级 PID,实现对系统更加简便、精准的控制。
  在状态反馈控制中,通过计算状态反馈转移增益矩阵 K,实现了极点配置,系统能回到平衡点。 极点配置的过程相对容易,没有 PID 那样繁琐。 状态反馈时使用了四个状态变量, 在实际的应用中, 通常不会使用这么多传感器, 因此, 可以设计降维观测器,通过观测器观测出一部分状态变量,从而减少传感器的使用。 虽然系统能够稳定在原点, 但要系统能够按照我们的指令到达任意位置, 仅仅使用状态反馈是不行的, 尝试对系统进行状态反馈解耦,实现对系统的任意位置控制。

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值