单级倒立摆从建模到仿真

把很久以前的草稿整理一下搬到博客上


1.动力学模型

        如图1所示,单级倒立摆系统由水平导轨,平移支座和摆杆构成。平移支座与摆杆无阻尼铰接(摆杆可自由摆动)。平移支座可以在导轨上受控平移,摆杆的质量是m,质心到铰链轴心的距离是l,过质心的z轴方向的转动惯量是I_z

图1 单级倒立摆结构简图

        根据拉格朗日力学对系统进行动力学建模。首先,根据系统的自由度确定描述系统运动的广义坐标。系统的自由度是2。因此,广义坐标可以取平移支座的水平位移x_c和摆杆的摆角θ。 系统拉格朗日方程(以下x_c不再带角标)为

\left\{\begin{matrix} \frac{\mathrm{d} }{\mathrm{d} t}\! \! \left ( \frac{\partial L}{\partial \dot{x}} \right )-\frac{\partial L}{\partial x}=F_x \\ \\ \frac{\mathrm{d} }{\mathrm{d} t}\! \! \left ( \frac{\partial L}{\partial \dot{\theta}} \right )-\frac{\partial L}{\partial \theta}=0 \end{matrix}\right.                                                      (1)

其中L=T-V,是拉格朗日函数。F_x是平移支座的驱动力。

动能:

T=\frac{1}{2}m\overrightarrow{\! v}\! \! \cdot\! \overrightarrow{\! v}+\frac{1}{2}I_z\dot{\theta}^2                                                  (2)

\overrightarrow{\! v}=\begin{bmatrix} \dot{x}\! -\! l\dot{\theta} \sin\theta\\ l\dot{\theta} \cos\theta \end{bmatrix}                                                          (3)

重力势能:

           V=mg\sin\theta                                                            (4)

       这里研究位移控制,即输入量是位移x,而不是驱动力矩F_x。因此,只对方程组(1)中的第二个展开。得到动力学方程

\left ( ml^2+I_z \right )\ddot{\theta}+mgl\cos\theta=ml\ddot{x}\sin\theta                                     (5)

       动力学模型(被控系统)Simulink框图见图2,初始摆角是5\pi/12。控制系统框图如图3所示,支座的初始位移是0.1m 。

图2 动力学模型

图3 控制系统

2.状态反馈控制器设计

2.1 摆杆倒立控制

       倒立摆控制的首要任务是摆杆的稳定倒立。方程(5)是个非线性微分方程,为了能用线性系统理论对它进行分析,需要先进行线性化。从方程(5)的形式可以看出,使用反馈线性化方法比较合适。令

\ddot{x}=\frac{u}{\sin\theta}+g\cot\theta                                                        (6)

于是得到线性的动力学方程

\left ( ml^2+I_z \right )\ddot{\theta}=u                                                          (7)

摆杆的相对竖直位置的偏差e_\theta\! =\! \pi/2\! -\! \theta, 于是有状态方程

\begin{bmatrix} \dot{e_\theta}\\ \ddot{e_\theta} \end{bmatrix} =\frac{ml}{ml^2+I_z}\begin{bmatrix} 0 & 1\\ 0 & 0 \end{bmatrix} \begin{bmatrix} e_\theta\\ \dot{e_\theta} \end{bmatrix}+\begin{bmatrix} 0\\1 \end{bmatrix}u                                     (8)

引入状态反馈

u=k_1e_\theta+k_2\dot{e_\theta}                                                       (9)

得到

\begin{bmatrix} \dot{e_\theta}\\ \ddot{e_\theta} \end{bmatrix} =\frac{ml}{ml^2+I_z}\begin{bmatrix} 0 & 1\\ -k_1 & -k_2 \end{bmatrix} \begin{bmatrix} e_\theta\\ \dot{e_\theta} \end{bmatrix}                                    (10)

当方程(10)中k_1k_2都大于零时状态向量\begin{bmatrix} e_\theta &\! \! \! \dot{e_\theta} \end{bmatrix}^T即可收敛,例如k1=2,k2=3,(k3、k4暂时赋值0)仿真结果见图4。

图4 摆杆倾角反馈下的输出曲线

2.2 支撑点位置控制

       从图4可见,当摆杆倒立稳定后,平移支座的水平位移一直在以恒定速率朝一个方向变化。这显然没有达到控制要求。因此,在系统的状态变量中再添加上平移支座的位移和速率。将摆杆角度偏差e_\theta\! =\! \pi/2\! -\! \theta 代入方程(5),再在e_\theta\! =\! 0处线性化

 \ddot{e}_\theta\approx \frac{g}{ml^2+I_z}e_\theta-\frac{1}{ml^2+I_z}\ddot{x}                                       (11)

于是有状态方程

\begin{bmatrix} \dot{e}_\theta\\ \ddot{e}_\theta\\\dot{x}\\ \ddot{x} \end{bmatrix} =\begin{bmatrix} 0 &1 &0 &0 \\ \frac{g}{ml^2+I_z}& 0& 0& 0\\ 0 & 0 & 0 &1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} e_\theta\\ \dot{e}_\theta\\x\\ \dot{x} \end{bmatrix} +\begin{bmatrix} 0\\ -\frac{1}{ml^2+I_z}\\ 0\\ 1 \end{bmatrix} \ddot{x}                    (12)

系统完全可控,可以任意配置极点,取状态反馈

\ddot{x}=K\begin{bmatrix} x & \dot{x} & \theta & \dot{\theta} \end{bmatrix}^T                                             (13)

将极点配置在[-3 -2 -9 -6]处,解得K=[212 68 50 47 ]。MATLAB求解代码见附录,输出结果见图5。

图5 极点配置状态反馈输出曲线

3.串级PD控制

        PD参数整定的基本思路是先确定控制的首要任务,优先确定与之相关的参数。在这里首要任务是摆杆的稳定倒立,因此先对摆杆角度偏差的PD响应参数Kp和Kd进行整定。在整定这两个参数时,在摆杆稳定的前提下,应尽可能取较大的Kp和Kd。摆杆倒立的PD参数整定好后,再进行平移支座的位移稳定PD参数整定。在这里根据控制任务的重要性,摆杆倒立稳定控制优先于平移支座的位移稳定控制。虽然支座位移是控制输入,但是根据任务优先顺序,支座平移稳定只属于间接的控制任务。由于支座位移稳定属于间接任务,于是在位移控制中:欲使支座往右移,得先使摆杆向右倾,支座就得先向左加速。这就是位移控制的参数正负号的确定思路。由于在摆杆角度偏差较大时,角度偏差PD反馈主导控制器输出;角度偏差较小时,支座水平位移PD反馈起才起作用。因此其增益参数Kp和Kd的值应比角度偏差反馈的PD参数小得多。位移PD反馈的增益参数整定顺序是先Kd后Kp,且Kd要大于Kp。这与偏角反馈的正好相反,例如[120 70 30 40],输出结果见图6。

图6 串级PD控制输出曲线

4.总结 

        在以上的分析中,状态反馈的和串级PD控制的本质是等效的,都是根据四个被测变量做反馈控制。状态反馈的极点配置需要提前知道动力学模型的参数,而串级PD反馈是通过实验来整定增益参数的。根据图5和图6的曲线来看,使用极点配置状态反馈的曲线比串级PD控制的更加光滑。这有利于防止电机损坏,所以在实践中可以将两种方法结合起来使用,各取所长。        

附录:

syms theta a g
a=1;g=9.8;    %a=ml^2+Iz
A=[0 1 0 0;0 0 0 0;0 0 0 1;0 0 g/a 0];  %状态矩阵
b=[0;1;0;-1/a];       %输出矩阵
Q=[b A*b A*A*b A*A*A*b];     %能控性判别矩阵
s=[-3-0i -2+0i -9-0i -6+0i]; %期望极点
S=diag(s);                  
Ke=poly(S);                  %期望特征多项式
Ka=poly(double(subs(A)));    %被控对象特征多项式
K_=[Ka(5)-Ke(5) Ka(4)-Ke(4) Ka(3)-Ke(3) Ka(2)-Ke(2)];
Tc=[A*A*A*b A*A*b A*b b]*[Ka(1) 0 0 0;Ka(2) Ka(1) 0 0;Ka(3) Ka(2) Ka(1) 0;Ka(4) Ka(3) Ka(2) Ka(1)];
K=double(subs(K_/Tc))
  • 10
    点赞
  • 61
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
单级倒立摆是一种具有非线性、强耦合、容易失稳等特点的控制系统。为了实现对单级倒立摆的控制,需要对其进行建模,然后设计一种有效的控制方法。本文介绍了基于粒子群优化PID控制算法的单级倒立摆建模和控制方法。 一、单级倒立摆建模 单级倒立摆由电机、悬挂杆和倒立摆组成,如图1所示。其运动方程可以用以下方程描述: Ml^2(θ)+Cθθ̇+Ml cos(θ)g sin(θ)=Pu (1) 其中,M是摆的质量,l是摆杆长度,θ是摆的偏转角度,Cθθ̇是摆杆阻尼系数,g是重力加速度,P是电机输出的功率,u是电机控制输入。 通过对运动方程进行拉普拉斯变换,得到传递函数模型: G(s)=θ(s)Pu(s)=1MlCθs^2+(Mg⁄l) (2) 图1单级倒立摆模型 二、PSO-PID控制器设计 粒子群优化(PSO)是一种模拟自然界中鸟群迁移行为的随机优化算法。PID控制器是一种常用的控制器,可以完成对系统的稳定控制。基于粒子群优化的PID控制算法(PSO-PID)将粒子群优化算法与PID控制器相结合,通过优化PID控制器的参数,实现对系统的优化控制。 PSO-PID控制器由比例(P)、积分(I)和微分(D)三个部分组成,其输出信号可以表示为: u(t)=Kp e(t)+Ki ∫e(t)dt+Kd(de(t)⁄dt) (3) 其中,Kp、Ki、Kd分别是比例、积分和微分系数。 在PSO-PID控制器中,需要设计一个适应度函数,在每次迭代中根据适应度函数来评价控制器优化的效果。一般适度函数的选择越符合控制系统的实际需求,PSO-PID控制器的性能越优越。 在单级倒立摆的控制中,适应度函数可以采用系统的稳态误差和控制器的响应速度两个指标进行评价。稳态误差越小,响应速度越快,则控制效果越好。 三、PSO-PID控制器模拟 通过MATLAB软件进行单级倒立摆的模拟。首先,通过建模方法得到单级倒立摆的传递函数模型,然后将其代入PSO-PID控制器中进行优化控制,最终得到控制器的参数。最后,将控制器的参数代入单级倒立摆的模型中进行仿真实验。 图2为单级倒立摆的控制效果图,其中蓝色线为设定值,红色线为仿真结果。可以看出,在经过一段时间的调整,系统可以稳定地跟随设定值,并实现良好的控制效果。 图2单级倒立摆的控制效果图 四、总结 本文介绍了一种基于粒子群优化PID控制算法的单级倒立摆建模和控制方法。通过将PSO算法和PID控制器相结合,实现了对单级倒立摆的优化控制。仿真实验结果表明,该方法可以有效地控制单级倒立摆的运动,具有较高的控制精度和鲁棒性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值