走进MOT系列 (七) --《Deep Cosine Metric Learning for Person Re-Identification》翻译

本文探讨了一种深度余弦度量学习方法,用于改善行人再识别任务。通过优化卷积softmax分类方案,学习的特征表示在测试时用于最近邻查询,实现了与直接度量学习目标相媲美的性能。这种方法在Market 1501和MARS等大规模数据集上表现出竞争力,尤其是在泛化能力上优于使用triplet loss的网络。
摘要由CSDN通过智能技术生成

参考笔记:https://blog.csdn.net/TYUT_xiaoming/article/details/99773097
理解参考笔记:https://blog.csdn.net/HaoBBNuanMM/article/details/85680426

<用于人的再识别的深余弦度量学习>

摘要

度量学习针对于一种观点,从同一个id上提取的特征可能会更接近相比于不同id上提提取的特征.这篇文提出了一种学习方法,一种余弦相似度被有效优化通过卷积softmax分类方案的简单参数化的特征空间.在测试时,最终分类层可以从网络上取出以促进最近邻查询在一个未知个体使用余弦相似度量. 这种方法提出了一个简单替换法去直接度量学习目标,比如过去siamese 网络(使用 sophisticated pair 或者 triplet sampling strategies).该方法在两个大规模的行人识别数据集上进行评估,其中总体上获得了有竞争力的结果。 特别是,与使用triplet loss训练的网络相比,我们在测试集上实现了更好的泛化。

1.Introduction

Person re-identification是视频监控中一项常见的task,给定query image用于搜索一个大型潜在图像库其中包含相同person.由于这里面通常使用不同的camera位于不同角度在同一时间,所以这套系统必须处理姿势变化、不同的光照条件和不断变化的背景.此外,在这种情况下禁止直接身份分类,因为在测试时收集的图库中的个人不包含在训练集中.相反, re-identification这一类问题一般在度量学习框架内得到解决.相反,Re-id问题通常在度量学习框架内得到解决。这里的目标是学习一个特征表示 -----适用于在测试为图像和身份上执行最近邻查询提供特征.理想情况下,所学习的特性表示应该是对上述干扰的条件不变同时遵循预定的度量(相似度量与行人身份一

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值