51-45 Diffuser,生成柔性行为的扩散轨迹规划

本文介绍了Diffuser,一种用于轨迹规划的扩散概率模型,能够生成柔性行为。Diffuser通过非自回归预测整个轨迹,利用强化学习作为引导采样和目标条件推理,适用于长序列决策问题。实验表明,Diffuser在长时规划、任务组合性和测试时间灵活性方面表现出优势,尤其是在多任务设置和稀疏奖励环境中。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

22年11月,Berkeley 和MIT联合发布Planning with Diffusion for Flexible Behavior Synthesis,作者在文中把轨迹扩散概率模型称为Diffuser。

Diffusion Model 具有更强的建模复杂分布的能力,能够更好地建模表征数据的各种特性,但是决策类问题除了需要处理表征建模的挑战,更注重于学习智能体策略的有效性和多样性。一种可行的思路是选择模仿学习方法,使用扩散模型来更好地“模仿”,“拟合”专家策略的数据分布:另一种思路就是选择强化学习,但强化学习方法和训练流程的复杂性和不稳定性很大程度上制约了扩散模型的使用。

图 1:经典强化学习分类 

早期无论是基于价值、基于策略还是基于模型的强化学习,都是将每一条轨迹分割成数个动作—状态对片段,并将每一个片段作为一个独立的样本点(datapoint)进行后续训练。与之相反,本文作者换个角度来看待这个数据集中的轨迹,即把每条轨迹视为一个样本点,从而将研究目标转变为建

### 使用扩散模型实现离线轨迹规划的方法 #### 方法概述 离线轨迹规划是指在一个预先收集的数据集上训练策略或价值函数,在测试阶段仅利用这些预训练好的组件来进行决策。对于基于扩散模型的离线轨迹规划,核心在于构建能够捕捉状态空间分布特性的生成模型。 Diffuser作为一种专门为学习轨迹优化而设计的扩散模型,通过引入噪声逐步破坏给定的状态序列直到其变得随机化,再反过来从纯噪音中重建原始数据的过程来完成这一目标[^1]。这种机制允许模型学会不同时间步之间的复杂关系,并有效地模拟可能的动作路径。 为了适应特定的任务需求,可以采用分类引导采样的方式调整生成过程中的条件约束,从而使得产生的轨迹更贴近期望的行为模式。例如,在机器人操作环境中,可以通过指定末端执行器的目标位置作为额外输入指导整个动作链的设计。 #### 应用案例分析 当面对高维连续控制问题时,如机械臂运动或是自动驾驶汽车导航,传统的基于模型的方法往往难以取得理想效果。相比之下,TAP(Trajectory Autoencoding Planner),它以VQ-VAE为基础框架并融合了变分自编码的思想,则展示了显著的优势。该方案不仅实现了高效的样本获取能力,而且能够在复杂的多模态环境下保持良好的泛化性能[^2]。 此外,随着研究进展,“探索未来智能的边界:基于扩散模型的强化学习综述”一文中提到的相关工作也进一步推动了此类技术的发展。通过对现有资源和技术路线图进行全面梳理,有助于识别当前领域内最具潜力的研究方向以及潜在的应用场景[^3]。 ```python import torch from diffusers import UNet2DModel class DiffusionPlanner: def __init__(self, model_path): self.model = UNet2DModel.from_pretrained(model_path) def plan_trajectory(self, start_state, end_goal, num_steps=100): trajectory = [] current_state = start_state for step in range(num_steps): noise_level = (num_steps - step) / num_steps with torch.no_grad(): predicted_noise = self.model(current_state.unsqueeze(0), timestep=noise_level).sample denoised_state = current_state - predicted_noise.squeeze() if step % 10 == 0 or step == num_steps - 1: trajectory.append(denoised_state.clone()) current_state = denoised_state + ((end_goal - denoised_state) * min(step / num_steps, 0.1)) return trajectory ``` 此代码片段展示了一个简单的基于UNet架构的扩散模型用于离线轨迹规划的例子。这里假设已经有一个经过良好训练的权重文件可供加载。`plan_trajectory` 函数接收起始状态 `start_state` 和结束目标 `end_goal` 参数,返回一系列中间过渡状态组成的列表表示完整的行动路线。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

深圳季连AIgraphX

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值