CUDA安装以及cuDNN配置

本文详细介绍了如何在Windows 10环境下安装CUDA 11.2和配置cuDNN 8.1.0。首先,通过NVIDIA官网下载CUDA和cuDNN的对应版本,然后进行CUDA的默认安装,并验证安装成功。接着,下载cuDNN并将其解压缩后的文件复制到CUDA安装目录相应位置,最后通过运行CUDA的官方示例验证cuDNN安装成功。确保电脑拥有NVIDIA显卡及正确驱动版本是顺利完成安装的前提。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

环境:Win10
CUDA:11.2
cuDNN:8.1.0


版本对应

NVIDIA官网给出的官方信息
CUDA
  所有能安装配置的前提是电脑拥有NVIDIA显卡(N卡),需要根据显卡的驱动信息选择对应的版本!

查驱动版本

打开NVIDIA控制面板,查看面板中的系统信息,检查驱动版本。
info
CUDA
也可以直接cmd命令行输入:nvidia-smi
cuda


一、安装CUDA 11.2

NVIDIA官网CUDA下载:11.2版本

  等待下载完成,NVIDIA因为是外网所以下载速度…真的是太慢了,但是你如果…“科学上网一下”会好很多…
CUDA

下载完成后是一个exe文件,双击打开
CUDA
我安装的是默认路径,点击 OK
CUDA
等待初始化
CUDA
CUDA
CUDA

点击 同意并继续(A)
CUDA

接下来选择自定义安装,点击 下一步(有些东西我感觉不会用到,所以就自定义安装了)

下一步选择想要安装的组件,因为我没有用过Visual Studio,所以去掉visual studio integration这一组件,Nsight我也不需要,这里解释一下,Visual Studio,Nsight都是CUDA C的IDE,如果不用的话可以都不用安装,我用的是Pycharm和Dev-C++,所以我就没装。

CUDA
这里直接默认,点击 下一步(N)即可

请注意:这里显示的是CUDA真正的安装位置
CUDA

等待安装完成
CUDA

安装完成,点击 关闭
CUDA
CUDA

安装完成,点击 下一步(N)
CUDA

安装完成,点击 关闭©
CUDA

打开cmd,输入nvcc -V验证安装是否成功,显示CUDA版本信息,说明CUDA安装成功
CUDA

二、配置cuDNN 8.1.0

  cuDNN是基于CUDA的深度学习GPU加速库。cuDNN是专门为深度学习算法服务的。同一个深度学习算法用cuDNN+CUDA实现相比直接CUDA实现效率更高,运行速度更快,资源消耗更少。

1.下载包(前提需要注册一个免费的NVIDIA)

注册账号就不多说了,直接注册就行,也可以直接微信扫码注册!

NVIDIA官网下载cuDNN: https://developer.nvidia.com/rdp/cudnn-archive

选择合适的版本
cuDNN

之后就会让你登录!注册一个账号,登陆即可
cuDNN
看到最上方有一个蓝条,就可以下载了
cuDNN

2.解压缩,复制文件

现在完成后是一个zip文件,需要解压缩
cuDNN
解压缩后得到三个文件夹,如下所示:
cuDNN
  将解压后得到的的 binincludelib 文件夹分别复制到 CUDA安装路径下 与CUDA的bin ,include 和lib文件夹合并。(相应文件夹下的文件复制粘贴)

  测试安装是否成功,运行CUDA的官方示例,在C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.2\extras\demo_suite路径下打开cmd(路径除CUDA版本外大致相同),运行.\deviceQuery.exe显示如下结果说明安装成功:
cuDNN

深度学习框架环境安装:

PyTorch 、Tensorflow、安装
深度学习框架安装:

### CUDAcuDNN 安装教程 对于希望在机器上设置 GPU 加速计算环境的研究人员和开发者来说,安装 NVIDIA 的 CUDA 工具包和 cuDNN 库是必不可少的过程。以下是详细的安装指南。 #### 下载并安装 CUDA 为了确保兼容性和性能优化,在安装前确认所使用的硬件支持目标版本的 CUDA 是重要的。以 CUDA 9.0 版本为例,可以从官方网站获取适用于操作系统的安装文件[^1]。完成下载之后,按照提示逐步执行安装向导直至结束。需要注意的是,如果操作系统已经预装了旧版本的 CUDA,则可能需要先卸载这些旧版本来避免潜在冲突。 #### 配置 CUDA 环境变量 安装完成后,需正确配置环境路径以便于后续开发工作顺利开展。这通常涉及到更新 `PATH` 变量使得命令行能够识别 nvcc 编译器的位置,并且将库目录加入到 LD_LIBRARY_PATH 中去(针对 Linux 用户)或者通过系统属性对话框添加至 PATH (Windows 用户)。验证此步骤成功的简单方法是在 PowerShell 输入命令 `nvcc -V` 并查看输出信息是否显示正确的 CUDA 版本号[^3]。 #### 下载并安装 cuDNN cuDNN 提供高效的原语运算实现用于深度神经网络应用,它依赖于已存在的 CUDA 基础设施之上运行。访问官方页面登录后可以找到对应版本的 cuDNN 文件进行下载。解压得到的内容应当被复制粘贴覆盖到现有 CUDA 安装位置下的相应子文件夹里,比如 include, lib 或者 bin 目录下。 #### 测试安装成果 最后一步是对整个过程做一次完整的检验。可以通过编写一段简单的 C++/Python 脚本来调用 CUDA API 来测试 GPU 是否正常工作;也可以尝试加载 TensorFlow 或 PyTorch 这样的框架实例化模型对象时指定使用 GPU 设备来进行加速训练任务。当一切准备就绪以后就可以着手构建自己的项目啦! ```bash # 使用 Python 测试 TensorFlow-GPU 支持情况 import tensorflow as tf print(tf.config.list_physical_devices('GPU')) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值