【动手学因果推断】(四):绘制DAG(因果图)表达因果问题

本文探讨了在因果推断中使用有向无环图(DAG)的重要性,解释了DAG如何帮助可视化因果假设并识别潜在的混淆变量。通过R语言的dagify和ggdag包,展示了如何创建和分析DAG,以解决如考试前听播客是否影响研究生考试成绩这样的因果问题。文章强调了识别和调整后门路径以避免虚假关联的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【动手学因果推断】:使用DAG(因果图)表达因果问题


  • 🌸个人主页:JOJO数据科学
  • 📝个人介绍:统计学top3高校统计学硕士在读
  • 💌如果文章对你有帮助,欢迎✌关注、👍点赞、✌收藏、👍订阅专栏
  • ✨本文收录于【动手学因果推断】本系列主要记录一些因果推断学习笔记,以及如何应用常见的方法,并给出相关代码,方便大家动手学习,后续会考虑做一些论文总结分析。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JOJO数据科学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值