细致讲解!— 基于Detectron2的AdelaiDet工具包的CondInst模型简单训练(2)


Condlnst模型简介

CondInst是一个简单但有效的实例分割框架。它消除了ROI裁剪和与实例感知遮罩头的特征对齐。因此,CondInst可以解决完全卷积网络的实例分割问题。CondInst能够生成高分辨率的实例掩码,而无需更长的计算时间。大量实验表明,CondInst比Mask R-CNN具有更好的性能和推理速度。它可以作为以前基于ROI的实例分割方法的有力替代。
论文点这里:论文地址!


平台的选择:极链AI云

优势特点:与很多平台不同,按小时计费;服务器GPU类型多样,选择多,数量多;有短期的暑期优惠和长期的学生优惠可以选择,非常的实惠!!!

贴一个极链AI云的官网:https://cloud.videojj.com


本文引用的github相关

AdelaiDet toolkit 地址:点这里跳转AdelaiDet
Detectron2 地址:点这里跳转Detectron2


所需配置

之前的配置文章


训练模型

1.数据集准备(以coco2014为例)

创建coco文件夹路径:

mkdir /root/AdelaiDet/datasets/coco

建立极链平台公共数据集与coco文件夹的软连接:

build coco2014 link:
ln -s /datasets/coco2014/train2014 /root/AdelaiDet/datasets/coco/train2014
ln -s /datasets/coco2014/test2014 /root/AdelaiDet/datasets/coco/test2014
ln -s /datasets/coco2014/val2014 /root/AdelaiDet/datasets/coco/val2014
ln -s /datasets/coco2014/annotations /root/AdelaiDet/datasets/coco/annotations

此处换成coco2017也可以,注意检查公共数据集的格式和位置!!!


2.修改yaml配置文件:

修改yaml文件
修改root/AdelaiDet/configs/Condlnst/Base-Condlnst.yaml中:
DATASETS:
TRAIN: (“coco_2014_train”,)
TEST: (“coco_2014_val”,)


3.用 COCO2014 跑Condlnst:

GPU数量可以根据需求选择。

OMP_NUM_THREADS=1 python tools/train_net.py \
    --config-file configs/CondInst/MS_R_50_1x.yaml \
    --num-gpus 8 \
    OUTPUT_DIR training_dir/CondInst_MS_R_50_1x

具体usage,按需调整:

usage: train_net.py [-h] [--config-file FILE] [--resume] [--eval-only] [--num-gpus NUM_GPUS] [--num-machines NUM_MACHINES] [--machine-rank MACHINE_RANK] [--dist-url DIST_URL] ...

positional arguments:
  opts                  Modify config options at the end of the command. For Yacs configs, use space-separated "PATH.KEY VALUE" pairs. For python-based LazyConfig, use
                        "path.key=value".

optional arguments:
  -h, --help            show this help message and exit
  --config-file FILE    path to config file
  --resume              Whether to attempt to resume from the checkpoint directory. See documentation of `DefaultTrainer.resume_or_load()` for what it means.
  --eval-only           perform evaluation only
  --num-gpus NUM_GPUS   number of gpus *per machine*
  --num-machines NUM_MACHINES
                        total number of machines
  --machine-rank MACHINE_RANK
                        the rank of this machine (unique per machine)
  --dist-url DIST_URL   initialization URL for pytorch distributed backend. See https://pytorch.org/docs/stable/distributed.html for details.

Examples:

Run on single machine:
    $ tools/train_net.py --num-gpus 8 --config-file cfg.yaml

Change some config options:
    $ tools/train_net.py --config-file cfg.yaml MODEL.WEIGHTS /path/to/weight.pth SOLVER.BASE_LR 0.001

小结

按照步骤即可完成,Condlnst的训练了,整个训练过程较长,花费时间较多。时间紧任务重,估计也是累死服务器里的显卡了,哈哈。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

赵云战江湖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值