LSTM 航空乘客预测单步预测的两种情况

前言

近期回顾LSTM 做时间序列数据预测,网上也有很多的教程,在跑这个程序时,遇到一些问题,特此记录分享一下。
使用LSTM 进行单步预测和多步预测,LSTM 的输出格式要重新调整,简单演示,不调参数。

这篇文章加入注意力机制的LSTM 对航空乘客预测,加了注意力机制的东西,有兴趣可以看看。

本文参考文章:
Time Series Prediction with LSTM Recurrent Neural Networks in Python with Keras
外国学者写的文章,比较具体,有兴趣可以进去看看。

我喜欢直接代码+ 结果展示
先代码可以跑通,才值得深入研究每个部分之间的关系;进而改造成自己可用的数据。

1. 数据集获取

链接: https://pan.baidu.com/s/1jv7A2JvIhA6oqvtYnYh9vQ
提取码: m5j5

2. 模型实验

数据展示
在这里插入图片描述
1949 到 1960 一共 12 年,每年 12 个月的数据,一共 144 个数据,单位是 1000

2.1 单步预测 1—》1

用当前数据预测下一个数据
目标:预测国际航班未来 1 个月的乘客数

  • 导入包
# 单变量,1---》1 

import numpy
import matplotlib.pyplot as plt
from pandas import read_csv
import math
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
  • 导入数据
# load the dataset
dataframe = read_csv('airline-passengers.csv', usecols=[1], engine='python')
# print(dataframe)
print("数据集的长度:",len(dataframe))
dataset = dataframe.values
# 将整型变为float
dataset = dataset.astype('float32')

plt.plot(dataset)
plt.show()

在这里插入图片描述

  • 数据格式转换为监督学习,归一化数据,训练集和测试集划分
# X是给定时间(t)的乘客人数,Y是下一次(t + 1)的乘客人数。
# 将值数组转换为数据集矩阵,look_back是步长。
def create_dataset(dataset, look_back=1):
    dataX, dataY = [], []
    for i in range(len(dataset)-look_back-1):
        a = dataset[i:(i+look_back), 0]
        # X按照顺序取值
        dataX.append(a)
        # Y向后移动一位取值
        dataY.append(dataset[i + look_back, 0])
    return numpy.array(dataX), numpy.array(dataY)

# fix random seed for reproducibility
numpy.random.seed(7)

# 数据缩放
scaler = MinMaxScaler(feature_range=(0, 1))
dataset = scaler.fit_transform(dataset)


# 将数据拆分成训练和测试,2/3作为训练数据
train_size = int(len(dataset) * 0.67)
test_size = len(dataset) - train_size
train, test = dataset[0:train_size,:], dataset[train_size:len(dataset),:]
print("原始训练集的长度:",train_size)
print("原始测试集的长度:",test_size)
  • 构建模型、预测
    训练集长度96 ,监督学习之后变为94
    原因:一是因为第96个数据没有预测值,这个值忽略;而是因为构建监督学习时,代码自动过滤一个值。所以变成94个数据。代码那块也可以不自动过滤一个值,对代码修改一下也行。

我当时在这里耗费很大的精力

# 构建监督学习型数据

look_back = 1
trainX, trainY = create_dataset(train, look_back)
testX, testY = create_dataset(test, look_back) 
print("转为监督学习,训练集数据长度:", len(trainX))
# print(trainX,trainY)
print("转为监督学习,测试集数据长度:",len(testX))
# print(testX, testY )
# 数据重构为3D [samples, time steps, features]
trainX = numpy.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1]))
testX = numpy.reshape(testX, (testX.shape[0], 1, testX.shape[1]))
print('构造得到模型的输入数据(训练数据已有标签trainY): ',trainX.shape,testX.shape)

# create and fit the LSTM network
model = Sequential()
model.add(LSTM(4, input_shape=(1, look_back)))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam')
model.fit(trainX, trainY, epochs=100, batch_size=1, verbose=2)

# 打印模型
model.summary()

# 开始预测
trainPredict = model.predict(trainX)
testPredict = model.predict(testX)

# 逆缩放预测值
trainPredict = scaler.inverse_transform(trainPredict)
trainY = scaler.inverse_transform([trainY])
testPredict = scaler.inverse_transform(testPredict)
testY = scaler.inverse_transform([testY])

# 计算误差
trainScore = math.sqrt(mean_squared_error(trainY[0], trainPredict[:,0]))
print('Train Score: %.2f RMSE' % (trainScore))
testScore = math.sqrt(mean_squared_error(testY[0], testPredict[:,0]))
print('Test Score: %.2f RMSE' % (testScore))


# shift train predictions for plotting
trainPredictPlot = numpy.empty_like(dataset)
trainPredictPlot[:, :] = numpy.nan
trainPredictPlot[look_back:len(trainPredict)+look_back, :] = trainPredict

# shift test predictions for plotting
testPredictPlot = numpy.empty_like(dataset)
testPredictPlot[:, :] = numpy.nan
testPredictPlot[len(trainPredict)+(look_back*2)+1:len(dataset)-1, :] = testPredict

# plot baseline and predictions
plt.plot(scaler.inverse_transform(dataset))
plt.plot(trainPredictPlot)
plt.plot(testPredictPlot)
plt.show()

这里说下LSTM的输入格式为:samples, time steps, features
input_shape的格式为:time steps, features
这两个地方容易出错

  • 打印输出结果
原始训练集的长度: 96
原始测试集的长度: 48
转为监督学习,训练集数据长度: 94  # 这两个地方需要重点注意一下,
转为监督学习,测试集数据长度: 46
构造得到模型的输入数据(训练数据已有标签trainY):  (94, 1, 1) (46, 1, 1)
Epoch 1/100
此过程省略

Model: "sequential_49"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
lstm_49 (LSTM)               (None, 4)                 96        
_________________________________________________________________
dense_49 (Dense)             (None, 1)                 5         
=================================================================
Total params: 101
Trainable params: 101
Non-trainable params: 0
_________________________________________________________________
Train Score: 22.62 RMSE
Test Score: 51.93 RMSE

在这里插入图片描述

  • 预测下一个月的数据
# 预测未来的数据

#测试数据的最后一个数据没有预测,这里补上
finalX = numpy.reshape(test[-1], (1, 1, testX.shape[1]))

#预测得到标准化数据
featruePredict = model.predict(finalX)

#将标准化数据转换为人数
featruePredict = scaler.inverse_transform(featruePredict)

#原始数据是1949-1960年的数据,下一个月是1961年1月份
print('模型预测1961年1月份的国际航班人数是: ',featruePredict)

结果:
模型预测1961年1月份的国际航班人数是: [[252.41042]]

2.2 单步预测 3—》1

前三步预测下一步数据

  • 直接代码
# 单变量,3---》1 

import numpy
import matplotlib.pyplot as plt
from pandas import read_csv
import math
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
#matplotlib inline

# load the dataset
dataframe = read_csv('airline-passengers.csv', usecols=[1], engine='python')
# print(dataframe)
print("数据集的长度:",len(dataframe))
dataset = dataframe.values
# 将整型变为float
dataset = dataset.astype('float32')

plt.plot(dataset)
plt.show()


# X是给定时间(t)的乘客人数,Y是下一次(t + 1)的乘客人数。
# 将值数组转换为数据集矩阵,look_back是步长。
def create_dataset(dataset, look_back=1):
    dataX, dataY = [], []
    for i in range(len(dataset)-look_back-1):
        a = dataset[i:(i+look_back), 0]
        # X按照顺序取值
        dataX.append(a)
        # Y向后移动一位取值
        dataY.append(dataset[i + look_back, 0])
    return numpy.array(dataX), numpy.array(dataY)

# fix random seed for reproducibility
numpy.random.seed(7)


# 数据缩放
scaler = MinMaxScaler(feature_range=(0, 1))
dataset = scaler.fit_transform(dataset)


# 将数据拆分成训练和测试,2/3作为训练数据
train_size = int(len(dataset) * 0.67)
test_size = len(dataset) - train_size
train, test = dataset[0:train_size,:], dataset[train_size:len(dataset),:]
print("原始训练集的长度:",train_size)
print("原始测试集的长度:",test_size)



# 构建监督学习型数据
look_back = 3
trainX, trainY = create_dataset(train, look_back)
testX, testY = create_dataset(test, look_back) 
print("转为监督学习,训练集数据长度:", len(trainX))
# print(trainX,trainY)
print("转为监督学习,测试集数据长度:",len(testX))
# print(testX, testY )
# 数据重构为3D [samples, time steps, features]
# trainX = numpy.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1]))
# testX = numpy.reshape(testX, (testX.shape[0], 1, testX.shape[1]))

trainX = numpy.reshape(trainX, (trainX.shape[0],  trainX.shape[1],1))
testX = numpy.reshape(testX, (testX.shape[0], testX.shape[1], 1))

print('构造得到模型的输入数据(训练数据已有标签trainY): ',trainX.shape,testX.shape)

# create and fit the LSTM network
model = Sequential()
# model.add(LSTM(4, input_shape=(1, look_back)))
model.add(LSTM(4, input_shape=( look_back,1)))  # 与上面的重构格式对应,要改都改,才能跑通代码


model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam')
model.fit(trainX, trainY, epochs=100, batch_size=1, verbose=2)

# 打印模型
model.summary()

# 开始预测
trainPredict = model.predict(trainX)
testPredict = model.predict(testX)

# 逆缩放预测值
trainPredict = scaler.inverse_transform(trainPredict)
trainY = scaler.inverse_transform([trainY])
testPredict = scaler.inverse_transform(testPredict)
testY = scaler.inverse_transform([testY])

# 计算误差
trainScore = math.sqrt(mean_squared_error(trainY[0], trainPredict[:,0]))
print('Train Score: %.2f RMSE' % (trainScore))
testScore = math.sqrt(mean_squared_error(testY[0], testPredict[:,0]))
print('Test Score: %.2f RMSE' % (testScore))


# shift train predictions for plotting
trainPredictPlot = numpy.empty_like(dataset)
trainPredictPlot[:, :] = numpy.nan
trainPredictPlot[look_back:len(trainPredict)+look_back, :] = trainPredict

# shift test predictions for plotting
testPredictPlot = numpy.empty_like(dataset)
testPredictPlot[:, :] = numpy.nan
testPredictPlot[len(trainPredict)+(look_back*2)+1:len(dataset)-1, :] = testPredict

# plot baseline and predictions
plt.plot(scaler.inverse_transform(dataset))
plt.plot(trainPredictPlot)
plt.plot(testPredictPlot)
plt.show()
  • 结果展示
原始训练集的长度: 96
原始测试集的长度: 48
转为监督学习,训练集数据长度: 92
转为监督学习,测试集数据长度: 44
构造得到模型的输入数据(训练数据已有标签trainY):  (92, 3, 1) (44, 3, 1)
Epoch 1/100
92/92 - 2s - loss: 0.0203
此过程省略

Model: "sequential_48"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
lstm_48 (LSTM)               (None, 4)                 96        
_________________________________________________________________
dense_48 (Dense)             (None, 1)                 5         
=================================================================
Total params: 101
Trainable params: 101
Non-trainable params: 0
_________________________________________________________________
Train Score: 22.11 RMSE
Test Score: 50.08 RMSE

在这里插入图片描述

  • 最后三个月预测下一个月的数据
# 预测未来的数据

#测试数据的最后一个数据没有预测,这里补上
finalX = numpy.reshape(test[-3:], (1, testX.shape[1], 1))


#预测得到标准化数据
featruePredict = model.predict(finalX)

#将标准化数据转换为人数
featruePredict = scaler.inverse_transform(featruePredict)

#原始数据是1949-1960年的数据,下一个月是1961年1月份
print('模型预测1961年1月份的国际航班人数是: ',featruePredict)
  • 结果展示

模型预测1961年1月份的国际航班人数是: [[461.36993]]

不要在意结果,你懂的!!!

3. 总结

  • 使用LSTM网络,数据要归一化处理, 格式要处理
  • 输入格式:samples, time steps, features(维度)
    input_shape的格式为:time steps, features
  • LSTM内部超参数可以调节,层数可以增加
  • 从数据的角度,考虑数据预处理的情况,比如差值填充之类的,这里没有用到。
  • 在划分数据集时,训练集长度,转为监督学习后长度会缩小。

有个疑问:
多步预测时

 # trainX = numpy.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1]))
# testX = numpy.reshape(testX, (testX.shape[0], 1, testX.shape[1]))
# model.add(LSTM(4, input_shape=(1, look_back)))

这个三个部分对应修改,程序也可以正常运行,预测结果和上述也差不多。
上面肯定是对的,这里的处理,我认为是数据处理的格式不同;比如说上面是前三步预测下一步,这里处理的话就是前一步预测下三步,模型都能跑通。
有大佬走过路过的话,烦请解答一下,万分感激。

  • 8
    点赞
  • 107
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 19
    评论
LSTM(Long Short-Term Memory)是一种适用于时间序列预测的神经网络模型,其具有记忆功能,可以利用长序列信息来进行预测。在进行时间序列的预测时,我们通常会面临两个难点:数据处理和模型搭建。 针对单步预测LSTM时间序列预测,我们首先需要进行数据处理。一种常用的方法是使用滑动窗口来处理数据。滑动窗口是指将时间序列数据切割成多个固定大小的窗口,每个窗口包含一定数量的历史数据及其对应的目标值。通过这种方式,我们可以将时间序列数据转化为监督学习问题,使得模型能够根据过去的观测值来预测未来的值。具体而言,我们可以将每个窗口的历史数据作为输入,目标值作为输出,从而建立监督学习模型。 接下来是模型的搭建。对于单步预测LSTM模型,我们可以将一个LSTM层连接到一个全连接层。LSTM层用于学习时间序列的长期依赖关系,而全连接层用于将LSTM层的输出映射到预测的目标值。在模型的参数设定方面,我们可以根据具体问题的需求和原始数据的情况来进行调整,以获得更好的预测效果。 综上所述,单步预测LSTM时间序列预测包括数据处理和模型搭建两个主要步骤。数据处理阶段中,我们可以使用滑动窗口方法将时间序列数据转化为监督学习问题。模型搭建阶段中,我们可以将一个LSTM层和一个全连接层相连接,以构建一个能够学习时间序列长期依赖关系的神经网络模型。这样的模型可以用于预测未来的单步时间序列数据。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 19
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

nsq_ai

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值