加入注意力机制的LSTM 对航空乘客预测

前言

这篇文章LSTM 航空乘客预测 单步预测和多步预测。 简单运用LSTM 模型进行预测分析。
想着可以进一步改进LSTM模型,就采用了目前市面上比较流行的注意力机制,将两者进行结合,对LSTM进行改进,其预测效果可能会变好。

我喜欢直接代码+ 结果展示
先代码可以跑通,才值得深入研究每个部分之间的关系;进而改造成自己可用的数据。

1 数据集

参考上面文章,会找到数据集,这里不重复了。

2 模型

下载注意力机制模块

pip install attention

2.1 单步预测 1—》1

代码

# 单变量,1---》1 

import numpy
import matplotlib.pyplot as plt
from pandas import read_csv
import math
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
#matplotlib inline

# load the dataset
dataframe = read_csv('airline-passengers.csv', usecols=[1], engine='python')
# print(dataframe)
print("数据集的长度:",len(dataframe))
dataset = dataframe.values
# 将整型变为float
dataset = dataset.astype('float32')

plt.plot(dataset)
plt.show()


# X是给定时间(t)的乘客人数,Y是下一次(t + 1)的乘客人数。
# 将值数组转换为数据集矩阵,look_back是步长。
def create_dataset(dataset, look_back=1):
    dataX, dataY = [], []
    for i in range(len(dataset)-look_back-1):
        a = dataset[i:(i+look_back), 0]
        # X按照顺序取值
        dataX.append(a)
        # Y向后移动一位取值
        dataY.append(dataset[i + look_back, 0])
    return numpy.array(dataX), numpy.array(dataY)

# fix random seed for reproducibility
numpy.random.seed(7)


# 数据缩放
scaler = MinMaxScaler(feature_range=(0, 1))
dataset = scaler.fit_transform(dataset)


# 将数据拆分成训练和测试,2/3作为训练数据
train_size = int(len(dataset) * 0.67)
test_size = len(dataset) - train_size
train, test = dataset[0:train_size,:], dataset[train_size:len(dataset),:]
print("原始训练集的长度:",train_size)
print("原始测试集的长度:",test_size)

# 构建监督学习型数据
look_back = 1
trainX, trainY = create_dataset(train, look_back)
testX, testY = create_dataset(test, look_back) 
print("转为监督学习,训练集数据长度:", len(trainX))
# print(trainX,trainY)
print("转为监督学习,测试集数据长度:",len(testX))
# print(testX, testY )
# 数据重构为3D [samples, time steps, features]
trainX = numpy.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1]))
testX = numpy.reshape(testX, (testX.shape[0], 1, testX.shape[1]))
print('构造得到模型的输入数据(训练数据已有标签trainY): ',trainX.shape,testX.shape)

# create and fit the LSTM network
from attention import  Attention
model = Sequential()
model.add(LSTM(4, input_shape=(1, look_back)))
Attention(name='attention_weight')
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam')
model.fit(trainX, trainY, epochs=100, batch_size=1, verbose=2)

# 打印模型
model.summary()

# 开始预测
trainPredict = model.predict(trainX)
testPredict = model.predict(testX)

# 逆缩放预测值
trainPredict = scaler.inverse_transform(trainPredict)
trainY = scaler.inverse_transform([trainY])
testPredict = scaler.inverse_transform(testPredict)
testY = scaler.inverse_transform([testY])

# 计算误差
trainScore = math.sqrt(mean_squared_error(trainY[0], trainPredict[:,0]))
print('Train Score: %.2f RMSE' % (trainScore))
testScore = math.sqrt(mean_squared_error(testY[0], testPredict[:,0]))
print('Test Score: %.2f RMSE' % (testScore))


# shift train predictions for plotting
trainPredictPlot = numpy.empty_like(dataset)
trainPredictPlot[:, :] = numpy.nan
trainPredictPlot[look_back:len(trainPredict)+look_back, :] = trainPredict

# shift test predictions for plotting
testPredictPlot = numpy.empty_like(dataset)
testPredictPlot[:, :] = numpy.nan
testPredictPlot[len(trainPredict)+(look_back*2)+1:len(dataset)-1, :] = testPredict

# plot baseline and predictions
plt.plot(scaler.inverse_transform(dataset))
plt.plot(trainPredictPlot)
plt.plot(testPredictPlot)
plt.show()

结果展示:

Train Score: 22.98 RMSE
Test Score: 48.30 RMSE

在这里插入图片描述
预测下一个月的数据:

# 预测未来的数据

#测试数据的最后一个数据没有预测,这里补上
finalX = numpy.reshape(test[-1], (1, 1, testX.shape[1]))

#预测得到标准化数据
featruePredict = model.predict(finalX)

#将标准化数据转换为人数
featruePredict = scaler.inverse_transform(featruePredict)

#原始数据是1949-1960年的数据,下一个月是1961年1月份
print('模型预测1961年1月份的国际航班人数是: ',featruePredict)

结果展示:

模型预测19611月份的国际航班人数是:  [[419.07907]]

2.2 单步预测 3—》1

代码:

# 单变量,3---》1 

import numpy
import matplotlib.pyplot as plt
from pandas import read_csv
import math
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
#matplotlib inline

# load the dataset
dataframe = read_csv('airline-passengers.csv', usecols=[1], engine='python')
# print(dataframe)
print("数据集的长度:",len(dataframe))
dataset = dataframe.values
# 将整型变为float
dataset = dataset.astype('float32')

plt.plot(dataset)
plt.show()


# X是给定时间(t)的乘客人数,Y是下一次(t + 1)的乘客人数。
# 将值数组转换为数据集矩阵,look_back是步长。
def create_dataset(dataset, look_back=1):
    dataX, dataY = [], []
    for i in range(len(dataset)-look_back-1):
        a = dataset[i:(i+look_back), 0]
        # X按照顺序取值
        dataX.append(a)
        # Y向后移动一位取值
        dataY.append(dataset[i + look_back, 0])
    return numpy.array(dataX), numpy.array(dataY)

# fix random seed for reproducibility
numpy.random.seed(7)


# 数据缩放
scaler = MinMaxScaler(feature_range=(0, 1))
dataset = scaler.fit_transform(dataset)


# 将数据拆分成训练和测试,2/3作为训练数据
train_size = int(len(dataset) * 0.67)
test_size = len(dataset) - train_size
train, test = dataset[0:train_size,:], dataset[train_size:len(dataset),:]
print("原始训练集的长度:",train_size)
print("原始测试集的长度:",test_size)



# 构建监督学习型数据
look_back = 3
trainX, trainY = create_dataset(train, look_back)
testX, testY = create_dataset(test, look_back) 
print("转为监督学习,训练集数据长度:", len(trainX))
# print(trainX,trainY)
print("转为监督学习,测试集数据长度:",len(testX))
# print(testX, testY )
# 数据重构为3D [samples, time steps, features]
# trainX = numpy.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1]))
# testX = numpy.reshape(testX, (testX.shape[0], 1, testX.shape[1]))

trainX = numpy.reshape(trainX, (trainX.shape[0],  trainX.shape[1],1))
testX = numpy.reshape(testX, (testX.shape[0], testX.shape[1], 1))

print('构造得到模型的输入数据(训练数据已有标签trainY): ',trainX.shape,testX.shape)

# create and fit the LSTM network
model = Sequential()
# model.add(LSTM(4, input_shape=(1, look_back)))
model.add(LSTM(4, input_shape=( look_back,1)))  # 与上面的重构格式对应,要改都改,才能跑通代码

Attention(name='attention_weight')

model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam')
model.fit(trainX, trainY, epochs=100, batch_size=1, verbose=2)

# 打印模型
model.summary()

# 开始预测
trainPredict = model.predict(trainX)
testPredict = model.predict(testX)

# 逆缩放预测值
trainPredict = scaler.inverse_transform(trainPredict)
trainY = scaler.inverse_transform([trainY])
testPredict = scaler.inverse_transform(testPredict)
testY = scaler.inverse_transform([testY])

# 计算误差
trainScore = math.sqrt(mean_squared_error(trainY[0], trainPredict[:,0]))
print('Train Score: %.2f RMSE' % (trainScore))
testScore = math.sqrt(mean_squared_error(testY[0], testPredict[:,0]))
print('Test Score: %.2f RMSE' % (testScore))


# shift train predictions for plotting
trainPredictPlot = numpy.empty_like(dataset)
trainPredictPlot[:, :] = numpy.nan
trainPredictPlot[look_back:len(trainPredict)+look_back, :] = trainPredict

# shift test predictions for plotting
testPredictPlot = numpy.empty_like(dataset)
testPredictPlot[:, :] = numpy.nan
testPredictPlot[len(trainPredict)+(look_back*2)+1:len(dataset)-1, :] = testPredict

# plot baseline and predictions
plt.plot(scaler.inverse_transform(dataset))
plt.plot(trainPredictPlot)
plt.plot(testPredictPlot)
plt.show()

结果展示:

Train Score: 28.57 RMSE
Test Score: 66.73 RMSE

在这里插入图片描述

预测下一个月的数据

# 预测未来的数据

#测试数据的最后一个数据没有预测,这里补上
finalX = numpy.reshape(test[-3:], (1, testX.shape[1], 1))
print(finalX)

#预测得到标准化数据
featruePredict = model.predict(finalX)

#将标准化数据转换为人数
featruePredict = scaler.inverse_transform(featruePredict)

#原始数据是1949-1960年的数据,下一个月是1961年1月份
print('模型预测1961年1月份的国际航班人数是: ',featruePredict)

结果展示

模型预测19611月份的国际航班人数是:  [[394.95465]]

3 总结

  • 注意力机制的作用
  • 代码中 LSTM后面连接注意力机制的代码
  • 不是说加了注意力机制的LSTM网络一定会好于LSTM,具体要看数据、参数和实验环境等条件
  • 13
    点赞
  • 200
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 25
    评论
引入注意力机制LSTM时间序列预测模型是一种用于处理序列数据的深度学习模型。该模型基于长短期记忆(LSTM)神经网络,通过引入注意力机制来增强模型对于时间序列数据的学习能力和预测准确性。 在传统的LSTM模型中,每一个时间步的隐藏状态都是由上一个时间步的隐藏状态和当前时间步的输入共同决定的,而引入注意力机制之后,模型可以根据输入的权重动态地调整各个时间步的重要性,从而更好地捕捉时间序列中的关键信息和模式。 具体地,该模型首先通过LSTM网络对时间序列数据进行特征提取和学习,然后在每一个时间步都计算出一个注意力权重,用以衡量该时间步的重要性。这些权重会被应用在隐藏状态的计算中,使得模型更加关注那些对于当前预测目标更为重要的时间步。 通过引入注意力机制,模型能够更加有效地处理长期依赖关系和序列中的局部重要信息,从而提高了对于时间序列数据的预测精度和泛化能力。该模型在金融市场预测、天气预测、交通流量预测等领域都取得了较好的效果,成为了当前时间序列预测领域的研究热点之一。 总之,引入注意力机制LSTM时间序列预测模型通过提高模型对于时间序列数据的关注度和学习能力,显著提升了模型的预测精度和鲁棒性,对于各种需要对序列数据进行建模和预测的应用场景具有重要意义。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 25
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

nsq_ai

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值