03.4 softmax回归

3.4. softmax回归

回归可以用于预测多少的问题。 比如预测房屋被售出价格,或者棒球队可能获得的胜场数,又或者患者住院的天数。
事实上,我们也对分类问题感兴趣:不是问“多少”,而是问“哪一个”:

  • 某个电子邮件是否属于垃圾邮件文件夹?

  • 某个用户可能注册或不注册订阅服务?

  • 某个图像描绘的是驴、狗、猫、还是鸡?

  • 某人接下来最有可能看哪部电影?

通常,机器学习实践者用分类这个词来描述两个有微妙差别的问题:

  1. 我们只对样本的“硬性”类别感兴趣,即属于哪个类别;
  2. 我们希望得到“软性”类别,即得到属于每个类别的概率。

这两者的界限往往很模糊。其中的一个原因是:即使我们只关心硬类别,我们仍然使用软类别的模型

3.4.1. 分类问题

输入一个2X2灰度图像,标量表示像素值,每个图像对应四个特征,假设每个图像属于类别“猫”,“鸡”和“狗”中的一个。

3.4.2. 网络架构

一个有多个输出的模型,每个类别对应一个输出。
与线性回归一样,softmax回归也是一个单层神经网络,softmax回归的输出层也是全连接层。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-2udYNxCW-1662219628101)(https://zh.d2l.ai/_images/softmaxreg.svg)]

3.4.3. 全连接层的参数开销

全连接层是“完全”连接的,可能有很多可学习的参数

3.4.4. softmax运算

将优化参数以最大化观测数据的概率。 为了得到预测结果,我们将设置一个阈值,如选择具有最大概率的标签

尽管softmax是一个非线性函数,但softmax回归的输出仍然由输入特征的仿射变换决定。 因此,softmax回归是一个线性模型(linear model)

3.4.5. 小批量样本的矢量化

为了提高计算效率并且充分利用GPU,我们通常会对小批量样本的数据执行矢量计算。

3.4.6. 损失函数

需要一个损失函数来度量预测的效果,将使用最大似然估计.

3.4.6.1. 对数似然

交叉熵损失(cross-entropy loss)

3.4.6.2. softmax及其导数
3.4.6.3. 交叉熵损失

是分类问题最常用的损失之一

3.4.7. 信息论基础

信息论(information theory)涉及编码、解码、发送以及尽可能简洁地处理信息或数据。

3.4.7.1. 熵

信息论的核心思想是量化数据中的信息内容。
在信息论中,该数值被称为分布的熵(entropy)。

3.4.7.2. 信息量

在观察一个事件时,并赋予它(主观)概率。
我们赋予一个事件较低的概率时,我们的惊异会更大,该事件的信息量也就更大。

3.4.7.3. 重新审视交叉熵

从两方面来考虑交叉熵分类目标:
(i)最大化观测数据的似然;
(ii)最小化传达标签所需的惊异。

3.4.8. 模型预测和评估

在训练softmax回归模型后,给出任何样本特征,我们可以预测每个输出类别的概率。 通常我们使用预测概率最高的类别作为输出类别。
如果预测与实际类别(标签)一致,则预测是正确的。
在接下来的实验中,我们将使用精度(accuracy)来评估模型的性能。
精度等于正确预测数与预测总数之间的比率。

3.4.9. 小结

  • softmax运算获取一个向量并将其映射为概率。
  • softmax回归适用于分类问题,它使用了softmax运算中输出类别的概率分布。
  • 交叉熵是一个衡量两个概率分布之间差异的很好的度量,它测量给定模型编码数据所需的比特数。
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

nsq_ai

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值