异常检测-基于统计学的方法

这篇博客探讨了统计学方法在异常检测中的重要性,包括参数方法和非参数方法。参数方法假设数据遵循特定的参数分布,如正态分布,通过计算概率识别异常点;非参数方法则直接从数据中学习模型。博客还详细介绍了基于正态分布的一元和多元异常检测,以及非参数方法中的HBOS算法。
摘要由CSDN通过智能技术生成

基于统计学的方法

概述

统计学方法对数据的正常性做出假定。**它们假定正常的数据对象由一个统计模型产生,而不遵守该模型的数据是异常点。**统计学方法的有效性高度依赖于对给定数据所做的统计模型假定是否成立。
异常检测的统计学方法的一般思想是:学习一个拟合给定数据集的生成模型,然后识别该模型低概率区域中的对象,把它们作为异常点。
即利用统计学方法建立一个模型,然后考虑对象有多大可能符合该模型。
根据如何指定和学习模型,异常检测的统计学方法可以划分为两个主要类型:参数方法和非参数方法。
参数方法假定正常的数据对象被一个以 Θ \Theta Θ为参数的参数分布产生。该参数分布的概率密度函数 f ( x , Θ ) f(x, \Theta) f(x,Θ)给出对象 x x x被该分布产生的概率。该值越小, x x x越可能是异常点。
非参数方法并不假定先验统计模型,而是试图从输入数据确定模型。非参数方法通常假定参数的个数和性质都是灵活的,不预先确定(所以非参数方法并不是说模型是完全无参的,完全无参的情况下从数据学习模型是不可能的)。

参数方法

基于正态分布的一元异常点检测

仅涉及一个属性或变量的数据称为一元数据。我们假定数据由正态分布产生,然后可以由输入数据学习正态分布的参数,并把低概率的点识别为异常点。
假定输入数据集为 { x ( 1 ) , x ( 2 ) , … , x ( m ) } \left\{x^{(1)}, x^{(2)}, \ldots, x^{(m)}\right\} {x(1),x(2),,x(m)},数据集中的样本服从正态分布,即 x ( i ) ∼ N ( μ , σ 2 ) x^{(i)} \sim N\left(\mu, \sigma^{2}\right) x(i)N(μ,σ2),我们可以根据样本求出参数 u u u σ \sigma σ
μ = 1 m ∑ i = 1 m x ( i ) \mu=\frac{1}{m} \sum_{i=1}^{m} x^{(i)} μ=m1i=1mx(i)
σ 2 = 1 m ∑ i = 1 m ( x ( i ) − μ ) 2 \sigma^{2}=\frac{1}{m} \sum_{i=1}^{m}\left(x^{(i)}-\mu\right)^{2} σ2=m1i=1m(x(i)μ)2
求出参数之后,我们就可以根据概率密度函数计算数据点服从该分布的概率。正态分布的概率密度函数为 p ( x ) = 1 2 π σ exp ⁡ ( − ( x − μ ) 2 2 σ 2 ) p(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) p(x)=2π σ1exp(2σ2(xμ)2)
如果计算出来的概率低于阈值,就可以认为该数据点为异常点。
阈值是个经验值,可以选择在验证集上使得评估指标值最大(也就是效果最好)的阈值取值作为最终阈值。
例如常用的3sigma原则中,如果数据点超过范围 ( μ − 3 σ , μ + 3 σ ) (\mu-3 \sigma, \mu+3 \sigma) (μ3σ,μ+3σ),那么这些点很有可能是异常点。
这个方法还可以用于可视化。箱线图对数据分布做了一个简单的统计可视化,利用数据集的上下四分位数(Q1和Q3)、中点等形成。异常点常被定义为小于Q1-1.5IQR或大于Q3+1.5IQR的那些数据。

多元异常点检测

涉及两个或多个属性或变量的数据称为多元数据。许多一元异常点检测方法都可以扩充,用来处理多元数据。其核心思想是把多元异常点检测任务转换成一元异常点检测问题。例如基于正态分布的一元异常点检测扩充到多元情形时,可以求出每一维度的均值和标准差。对于第维:
μ j = 1 m ∑ i = 1 m x j ( i ) σ j 2 = 1 m ∑ i = 1 m ( x j ( i ) − μ j ) 2 \begin{aligned} \mu_{j} &=\frac{1}{m} \sum_{i=1}^{m} x_{j}^{(i)} \\ \sigma_{j}^{2} &=\frac{1}{m} \sum_{i=1}^{m}\left(x_{j}^{(i)}-\mu_{j}\right)^{2} \end{aligned} μjσj2=m1i=1mxj(i)=m1i=1m(xj(i)μj)2
计算概率时的概率密度函数为
p ( x ) = ∏ j = 1 n p ( x j ; μ j , σ j 2 ) = ∏ j = 1 n 1 2 π σ j exp ⁡ ( − ( x j − μ j ) 2 2 σ j 2 ) p(x)=\prod_{j=1}^{n} p\left(x_{j} ; \mu_{j}, \sigma_{j}^{2}\right)=\prod_{j=1}^{n} \frac{1}{\sqrt{2 \pi} \sigma_{j}} \exp \left(-\frac{\left(x_{j}-\mu_{j}\right)^{2}}{2 \sigma_{j}^{2}}\right) p(x)=j=1np(xj;μj,σj2)=j=1n2π σj1exp(2σj2(xjμj)2)
这是在各个维度的特征之间相互独立的情况下。如果特征之间有相关性,就要用到多元高斯分布了。

多个特征相关,且符合多元高斯分布

μ = 1 m ∑ i = 1 m x ( i ) \mu=\frac{1}{m} \sum_{i=1}^{m} x^{(i)} μ=m1i=1mx(i)
∑ = 1 m ∑ i = 1 m ( x ( i ) − μ ) ( x ( i ) − μ ) T \sum=\frac{1}{m} \sum_{i=1}^{m}\left(x^{(i)}-\mu\right)\left(x^{(i)}-\mu\right)^{T} =m1i=1m(x(i)μ)(x(i)μ)T
p ( x ) = 1 ( 2 π ) n 2 ∣ Σ ∣ 1 2 exp ⁡ ( − 1 2 ( x − μ ) T Σ − 1 ( x − μ ) ) p(x)=\frac{1}{(2 \pi)^{\frac{n}{2}}|\Sigma|^{\frac{1}{2}}} \exp \left(-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right) p(x)=(2π)2nΣ211exp(21(xμ)TΣ1(xμ))

使用混合参数分布

在许多情况下假定数据是由正态分布产生的。当实际数据很复杂时,这种假定过于简单,可以假定数据是被混合参数分布产生的。

非参数方法

在异常检测的非参数方法中,“正常数据”的模型从输入数据学习,而不是假定一个先验。通常,非参数方法对数据做较少假定,因而在更多情况下都可以使用。

HBOS

HBOS全名为:Histogram-based Outlier Score。它是一种单变量方法的组合,不能对特征之间的依赖关系进行建模,但是计算速度较快,对大数据集友好。其基本假设是数据集的每个维度相互独立。然后对每个维度进行区间(bin)划分,区间的密度越高,异常评分越低。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值