时间序列预测方法之 DeepAR

本文链接个人站 | 简书 | CSDN
版权声明:除特别声明外,本博客文章均采用 BY-NC-SA 许可协议。转载请注明出处。

最近打算分享一些基于深度学习的时间序列预测方法。这是第一篇。

DeepAR 是 Amazon 于 2017 年提出的基于深度学习的时间序列预测方法,目前已集成到 Amazon SageMakerGluonTS 中。前者是 AWS 的机器学习云平台,后者是 Amazon 开源的时序预测工具库。

传统的时间序列预测方法(ARIMAHolt-Winters’ 等)往往针对一维时间序列本身建模,难以利用额外特征。此外,传统方法的预测目标通常是序列在每个时间步上的取值。与之相比,基于神经网络的 DeepAR 方法可以很方便地将额外的特征纳入考虑,且其预测目标是序列在每个时间步上取值的概率分布。在特定场景下,概率预测比单点预测更有意义。以零售业为例,若已知商品未来销量的概率分布,则可以利用运筹优化方法推算在不同业务目标下的最优采购量,从而辅助决策(详见《如何在商品采购中考虑不确定性》《报童问题》以及《报童问题的简单解法》)。

本文将简要地介绍一下 DeepAR 模型,并给出一个 demo。如果希望了解更多细节,建议直接阅读 Amazon 的论文 Deep AR: Probabilistic Forecasting with Autoregressive Recurrent Networks

Model

z i , t z_{i,t} zi,t 表示第 i i i 个序列在时间步 t t t 的值, x i , t x_{i, t} xi,t 表示特征, t 0 t_0 t0 表示预测开始时刻。DeepAR 基于自回归循环神经网络预测 z i , t z_{i,t} zi,t 的概率分布1,用似然函数 l ( z i , t ∣ θ i , t ) l(z_{i, t}|\theta_{i, t}) l(zi,tθi,t) 表示。

模型如下图所示,左边是训练过程,右边是预测过程。
DeepAR 模型

训练时,在每一个时间步 t t t,网络的输入包括特征 x i , t x_{i, t} xi,t 、上一个时间步的取值 z i , t − 1 z_{i, t-1} zi,t1,以及上一个时间步的状态 h ⃗ i , t − 1 \vec h_{i, t-1} h i,t1。先计算当前的状态 h ⃗ i , t = h ( h ⃗ i , t − 1 , z i , t − 1 , x i , t ) \vec h_{i, t}=h(\vec h_{i, t-1}, z_{i, t-1}, x_{i, t}) h

  • 27
    点赞
  • 205
    收藏
    觉得还不错? 一键收藏
  • 19
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 19
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值