Bootstrap 【机器学习】

       Bootstrap,是resampling methods的一种,其他resampling methods方法(如cross-validation)可见笔者的其他博客:Cross validation 交叉验证 【机器学习】_HugoOo0的博客-CSDN博客

       本文我们将通过三个问题来了解Bootstrap

1)干什么的?

       Bootstrap repeatedly drawing samples from a training data set and refitting a given model on each sample with the goal of learning more about the model.

      Bootstrapping从字面意思翻译是拔靴法从其内容翻译又叫自助法,是一种再抽样的统计方法。

       通过Bootstrap,我们可以在不引入新样本的情况下,生成新样本集。也就是说,在数据量有限的情况下,我们可以用它来产生“新”数据,以便更“深度”地学习数据、建立模型。
 

2)怎么运作的?

       首先,我们用 Z=(\underline{z_{1}},\underline{z_{2}},...,\underline{z_{n}}) 来表示数据集,其中 \underline{z_{i}}=(\underline{x_{i}}^T,y_{i}), 我们随机地从中抽取出n组数据组成一个新的数据集(允许重复)。重复B次,得到 Z^{*1},Z^{*2},...,Z^{*B}

       随后,套用下面公式来进行估计。此公式中,我们用数据集Z^{*r}计算得出a的估计值\hat{a}^{*r}

        下图方便读者理解。

3)优缺点?

1.自助法产生的训练集改变了初始数据集的分布,会引入估计偏差。

2.自助法能从初始数据集中产生多个不同的训练集,可以用于集成学习

参考文献:James G.,Written D.,Hastie T. and Tibshirani R.(2013).  An intruduction to statistical learning with applications in R, Springer.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值