第五章. 可视化数据分析图表—图表的常用设置1

第五章. 可视化数据分析图

5.2 图表的常用设置1

本节主要介绍图表的常用设置,主要包括颜色设置,线条样式,标记样式,设置画布,坐标轴,添加文本标签。

1.设置画布(matplotlib.pyplot.figure)

在matplotlib中,可以使用figure函数来设置画布大小,分辨率,颜色和边框等

1).语法:

matplotlib.pyplot.figure(num=None,figsize=None,dpi=None,facecolor=None,edgecolor=None,frameon=True)

参数说明:
num:图像编号(数字)或名称(字符串),可以通过这个参数来激活不同的画布
figsize:画布的宽和高,单位:英寸
dpi:指定绘图对象的分辨率,每英寸包含多少个像素,像素越大,画布越大,默认值为80
facecolor:背景颜色
edgecolor:边框颜色
frameon:是否显示边框,True:绘制边框(默认值)

注:
figsize(5,3),实际的画布大小是500*300,所以参数不宜给很大

2.基本的绘图函数(matplotlib.pyplot.plot)

在matplotlib中,基本绘图主要使用plot函数

1).语法:

matplotlib.pyplot.plot(x,y,format_string,**kwargs)

参数说明:
x:x轴数据
y:y轴数据
format_string:控制曲线格式的字符串,包括颜色,线条样式,标记样式等
**kwargs:键值参数,相当于一个字典,比如,输入参数为:(1,2,3,4,k,a=1,b=2,c=3),*args=(1,2,3,4,k),**kwargs={‘a’:1,‘b’:2,‘c’:3}

2).颜色设置:(color)

设置值说明设置值说明
b蓝色m洋红色
g绿色y黄色
r红色K黑色
c蓝绿色W白色
#FFFF00黄色,十六进制颜色值0.5灰色

注:其他颜色可通过十六进制字符串进行指定

3).线条样式:(linestyle)

设置值说明
-实线(默认)
双划线
-.点划线
虚线

4).标记样式:(marker)

设置值说明设置值说明设置值说明
.点标记1下花三角标记h竖六边形标记
,像素标记2上花三角标记H
o实心圆标记3左花三角标记+
v倒三角标记4右花三角标记x
^上三角标记s实心正方形标记D大菱形标记
>右三角标记p实心五角星标记d小菱形标记
<左三角标记*星形标记|垂直线标记

注:mfc参数可为标记样式内部填充颜色

3.设置坐标轴(x轴:xlabel,y轴:ylabel)

1).语法:

  • x轴语法:

    matplotlib.pyplot.xlabel(xlabel, fontdict=None,labelpad=None**kwargs)
    

    参数说明:
    xlabel:标签文本。并且包含字符串值

  • y轴语法:

    matplotlib.pyplot.ylabel(ylabel, fontdict=None,labelpad=None**kwargs)
    

    参数说明:
    ylabel:标签文本。并且包含字符串值

2).技巧:

  • 中文乱码问题的解决方法:
    matplotlib.pyplot.rcParams['font.sans-serif'] = ['SimHei']
    
  • 符号不显示问题的解决方法:
    plt.rcParams['axes.unicode_minus'] = False
    

4.坐标轴刻度(x轴:xticks,y轴:yticks)

1).语法:

  • x轴语法:

    matplotlib.pyplot.xticks(locs,[labels]**kwargs)
    

    参数说明:
    locs:数组,x轴的刻度
    labels:数组,默认与locs相同,locs表示位置,labels决定了位置上的标签

  • y轴语法:

    matplotlib.pyplot.yticks(locs,[labels]**kwargs)
    

    参数说明:
    locs:数组,y轴的刻度
    labels:数组,默认与locs相同,locs表示位置,labels决定了位置上的标签

2).技巧:

  • 通过xlim函数和ylim函数可设置坐标轴范围:
    matplotlib.pyplot.xlim(1,10)
    matplotlib.pyplot.ylim(1,10)
    

5.网格线(grid)

1).语法:

matplotlib.pyplot.grid()

参数说明:
可设置很多参数,如颜色,线宽,网格样式,例如:DataFrame.resample.grid(color=‘0.5’, linestyle=‘–’, linewidth=1)

2).技巧:

  • 网格线对于饼形图来说,直接使用时并不会显示,需要与饼形图的frame参数配合使用,设置该参数值为True

6.添加文本标签(text)

1).语法:

matplotlib.pyplot.text(x,y,s,fontdict=None,withdash=False,**kwargs)

参数说明:
x:x坐标轴的值
y:y轴坐标轴的值
s:字符串,注释内容
fontdict:字典,用于重写默认文本属性(可选参数)
withdash:创建一个TextWithDash实例,而不是Text实例
**kwargs:关键字参数,这里指通用的绘图参数,如
字体大小fontsize=10,
垂直对齐方式:ha=‘center’ (参数:‘center’| ‘right’ | ‘left’ )
水平对齐方式:va=‘center’ (参数: ‘center’ | ‘top’ | ‘bottom’ | ‘baseline’ )

注意:图表的常用设置:如设置标题和图例,添加注释文本,调整图表与画布边缘间距以及其他设置,在图表的常用设置2 继续介绍

### 回答1: 在YOLOv5中,figsize是指图形的大小,通常用于绘制图表、图像等。它是一个元组,包含两个值,分别表示图形的宽度和高度。例如,figsize=(10, 5) 表示图形的宽度为10,高度为5。这个参数可以在绘制图形时设置,以控制图形的大小。 ### 回答2: 在YOLOv5中,figsize是一个用于设置图像大小的参数。 figsize的全称是figure size,它表示在用matplotlib库进行图像绘制时,创建的绘图窗口的大小。在YOLOv5中,当绘制检测结果时,可以通过设置figsize参数来调整结果图像的尺寸大小。 具体来说,figsize是一个包含两个元素的元组,表示绘图窗口的宽度和高度。例如,figsize=(10, 8)就表示绘图窗口的宽度为10个单位,高度为8个单位。 调整figsize的数值可以改变绘图窗口的大小,从而影响绘制出的图像的显示效果。较大的figsize值会导致绘图窗口变大,图像显示的细节更清晰,但也可能导致绘图窗口超出屏幕范围,需要进行滚动来查看完整图像。较小的figsize值则会使得绘图窗口变小,图像显示的细节可能较模糊,但整个图像可以一次性完整显示在屏幕上。 综上所述,figsize在YOLOv5中的意思就是用于设定绘图窗口大小的参数,可以通过调整其数值来控制绘制的图像在屏幕上的显示效果。 ### 回答3: 在YOLOv5中,figsize代表的是图形的尺寸大小。figsize是由两个值组成的元组,用于指定图形的宽度和高度。通常情况下,这两个值是以英寸为单位的浮点数。 在目标检测算法中,绘制图像是一项重要的操作,figsize的设置可以影响图像的显示效果。较小的figsize值会导致图像显示较小,目标物体可能会变得模糊或不明显,而较大的figsize值会使图像显示较大,使得目标物体更易于观察和分析。 在YOLOv5中,figsize通常用于绘制模型训练过程中的损失曲线、准确率曲线等图像,以及绘制测试过程中的检测结果图像。通过设置合适的figsize值,可以更好地展示训练和测试的结果,有助于用户了解模型的训练和性能表现。 总而言之,YOLOv5中的figsize是用于指定绘制图像的尺寸大小,通过设置合适的值可以得到更好的图像显示效果,有助于分析和评估模型的训练和性能表现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值