Datawhale X 李宏毅苹果书 AI夏令营-深度学习基础-Task2_1

# Datawhale AI 夏令营

夏令营手册:向李宏毅学深度学习

自适应学习率

临界点其实不一定是在训练一个网络的时候会遇到的最大的障碍。图 3.18 中的横坐标代表参数更新的次数,竖坐标表示损失。一般在训练一个网络的时候,损失原来很大,随着参数不断的更新,损失会越来越小,最后就卡住了,损失不再下降。当我们走到临界点的时候,意味着梯度非常小,但损失不再下降的时候,梯度并没有真的变得很小,图 3.19 给出了示例。图 3.19 中横轴是迭代次数,竖轴是梯度的范数(norm),即梯度这个向量的长度。随着迭代次数增多,虽然损失不再下降,但是梯度的范数并没有真的变得很小。

AdaGrad

AdaGrad(Adaptive Gradient)是典型的自适应学习率方法,其能够根据梯度大小自动调整学习率。AdaGrad 可以做到梯度比较大的时候,学习率就减小,梯度比较小的时候,学习率就放大。

RMSProp

同一个参数需要的学习率,也会随着时间而改变。在图 3.25 中的误差表面中,如果考虑横轴方向,绿色箭头处坡度比较陡峭,需要较小的学习率,但是走到红色箭头处,坡度变得平坦了起来,需要较大的学习率。因此同一个参数的同个方向,学习率也是需要动态调整的,于是就有了一个新的方法———RMSprop(Root Mean Squared propagation)。

Adam

最常用的优化的策略或者优化器(optimizer)是Adam(Adaptive moment estimation)[7]。Adam 可以看作 RMSprop 加上动量,其使用动量作为参数更新方向,并且能够自适应调整学习率。PyTorch 里面已经写好了 Adam 优化器,这个优化器里面有一些超参数需要人为决定,但是往往用 PyTorch 预设的参数就足够好了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值