YOLOv8_seg预测流程-原理解析[实例分割理论篇]

本文详细解析YOLOv8实例分割网络的预测流程,包括预处理、推理和后处理模块。预处理涉及图像尺寸调整和归一化;推理阶段Box和Cls解码与目标检测相似,而Mask和Proto分支不做解码;后处理中,NMS筛选预测框,Proto与Mask系数矩阵相乘得到实例分割结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        YOLOv8_seg的网络结构图在博客YOLOv8网络结构介绍_CSDN博客已经更新了,由网络结构图可以看到相对于目标检测网络,实例分割网络只是在Head层不相同,如下图所示,在每个特征层中增加了Mask ceofficient层(浅紫色),这和同一层的Box,cls的shape大小一样;另外还利用80×80尺度的特征图,经过卷积+上采样后得到通道数为32,分辨率为160×160的Prototype Mask层(即Proto层)。

         下面正式介绍下YOLOv8的预测流程,先来大概看一下预测流程有哪些,主要分预处理模块、推理模块和后处理模块。这里面有很多内容是和目标检测预测流程是重合的,主要区别在于mask_ceof分支、Proto分支以及Process_mask后处理上,本文也主要介绍一下Process_mask模块&

### 使用YOLOv8生成力图 为了使用YOLOv8生成力图,基本流程涉及几个关键步骤。首先是利用YOLOv8模型进行对象检测并获取预测结果;其次,这些预测结果被转换成适合展示的形式—即力图格式;再者,将此力图与原始图片相融合以直观呈现检测效果;最后一步则是渲染最终合成后的图像以便查看[^1]。 对于具体的实现方式,在处理视频流或连续帧数据时,可以采用累积的方式记录特定区域内目标出现频率,进而形成密度力图[^2]。这不仅限于静态图像上的单次推理,也适用于动态场景中的实时监测。 下面给出一段Python代码示例用于说明如何基于YOLOv8和OpenCV创建简单的运动力图: ```python import cv2 from ultralytics import YOLO model = YOLO('yolov8n.pt') # 加载预训练好的YOLOv8 nano模型 cap = cv2.VideoCapture(0) heat_map = None while True: ret, frame = cap.read() results = model(frame)[0].boxes.data.cpu().numpy()[:, :4] if heat_map is None: heat_map = np.zeros_like(frame[:,:,0], dtype=float) for box in results: x_min, y_min, x_max, y_max = map(int, box[:4]) heat_map[y_min:y_max,x_min:x_max] += 1 norm_heatmap = (heat_map / heat_map.max()) * 255 heatmap_img = cv2.applyColorMap(np.uint8(norm_heatmap), cv2.COLORMAP_JET) combined_image = cv2.addWeighted(cv2.cvtColor(frame,cv2.COLOR_BGR2RGB), 0.7, heatmap_img, 0.3, 0) cv2.imshow('Heat Map', combined_image) key = cv2.waitKey(1) & 0xFF if key == ord("q"): break cv2.destroyAllWindows() ``` 上述脚本展示了怎样读取摄像头输入,并通过YOLOv8执行目标识别任务的同时构建一个累加式的力图。每次迭代过程中更新区域内的度值,从而反映随着时间推移各个位置的目标活动情况。此外,还包含了色彩映射以及图像混合操作使得输出更加美观易懂[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

吃鱼不卡次

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值