r语言遗传算法的实现(应用mcga包和genalg包)

本文介绍了如何使用R语言中的mcga和genalg包实现遗传算法,探讨了mcga包的快速搜索能力和genalg包的可视化功能,并通过解决优化问题展示了它们的应用,最终找到函数x*sinx在特定区间内的最大值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

用r语言实现遗传算法

遗传算法是一类常见的随机化搜索方法,目前被广泛应用于组合优化,机器学习,信号处理,人工智能等领域。

这里以模型参数优化为背景学习遗传算法的r语言实现

r语言中常用的实现遗传算法的包有mcga包、genalg包、rgenoud包
其中mcga、genalg包比较简单,上手较快。rgenoud包将遗传算法和衍生的牛顿算法结合起来,可以求解复杂函数的优化问题。
这里主要学习mcga包,genalg包的用法

mcga包使用字节表示变量,而不是实值,并且基于这些用字节表示的染色体进行经典的交叉操作。即从染色体中随机选取一个字节值,并以1/2的概率通过+1或-1进行变异。。它的特点是快速,并可以处理大范围的高精度空间搜索。
mcga包主要包含两个函数:mcga、multi_mcga,其中mcga适用于单目标函数最小化问题,multi_mcga可以使用mcga的逻辑实现多目标的优化。

mcga函数定义及参数说明如下:

mcga (popsize, chsize, crossprob = 1, mutateprob = 0.01, 
    elitism = 1, minval, maxval, maxiter = 10, evalFunc)  

在这里插入图片描述

这里使用mcga函数对 “求解fx=x*sinx , x∈[0,12.55]在给定区间的最大值” 的问题进行求解。

#定义适应度函数
> getAdjust <- function(x)
+ {
   
+     if(x>=0 && x<=12.55)
+     {
   
+         return(-(x*sin(x)))  #由于评估函数是针对最小化问题的,因此要求最大值此处需加个负号
+     }
+     else
+     {
   
+         return(exp
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值