Triangle Attack: A Query-efficient Decision-based Adversarial Attack

Triangle Attack: A Query-efficient Decision-based Adversarial Attack
三角攻击:一种查询高效的基于决策的对抗性攻击

Abstract

基于决策的攻击对实际应用程序构成了严重的威胁,因为它将目标模型视为一个黑箱,只访问硬预测标签。最近已经做出了很大的努力来减少查询的数量;然而,现有的基于决策的攻击仍然需要数千个查询才能生成高质量的对抗示例。在这项工作中,我们发现一个良性样本,当前和下一个对抗样本可以自然地在子空间中为任何迭代攻击构建一个三角形。基于正弦定律,我们提出了一种新的三角形攻击(TA),利用任何三角形中较长的边总是与较大的角相对的几何信息来优化扰动。然而,直接将这些信息应用于输入图像是无效的,因为它不能彻底探索输入样本在高维空间的邻域。为了解决这个问题,TA优化了低频空间的扰动,由于这种几何性质的普遍性,有效降维。对ImageNet数据集的广泛评估表明,TA在1,000个查询中实现了更高的攻击成功率,并且与现有的基于决策的攻击相比,在各种扰动预算下实现相同的攻击成功率所需的查询数量要少得多。通过如此高的效率,我们进一步验证了TA在现实API,即腾讯云API上的适用性。

1. Introduction

尽管深度神经网络(DNNs)[27,24,25]取得了前所未有的进展,但对抗实例[47]的脆弱性对安全敏感应用构成了严重威胁,例如,人脸识别[42,48,20,30,56,50,15,37,62],自动驾驶[7,19,4,61,40]等。为了在各种现实应用中安全地部署dnn,有必要对对抗实例的内在特性进行深入分析,这启发了大量对抗攻击[36,6,3,11,8,17,5,52]和防御[34,23,64,57,58,53]的研究。现有的攻击可以分为两类:白盒攻击对目标模型有充分的了解(通常利用梯度)[21,6,34,17],而黑盒攻击只能访问模型输出,更适用于现实场景。
黑盒攻击可以通过不同的方式实现。基于转移的攻击[32,17,60,55]利用替代模型上生成的对手直接欺骗目标模型。基于分数的攻击[9,26,2,31]假设攻击者可以访问输出日志,而基于决策(又称硬标签)的攻击[5,11,10,29,35]只能访问预测(top-1)标签。
在黑盒攻击中,基于决策的攻击由于攻击所需的信息最少,更具挑战性和实用性。在基于决策的攻击中,对目标模型的查询数量往往起着重要的作用,因为在实践中,对受害者模型的访问通常受到限制。尽管最近的工作设法将查询总数从数百万减少到数千个请求[5,29,38],但对于大多数实际应用[35]来说,这仍然不够。
现有的基于决策的攻击[5,29,38,35]首先产生一个较大的对抗性扰动,然后通过各种优化方法使扰动最小化,同时保持对抗性特性。
如图1所示,我们发现在第t次迭代时,良性样本x、当前对抗例xadvt和下一个对抗例xadvt+1可以很自然地为任何迭代攻击构建一个三角形。根据正弦定理,在(t +1)次迭代时,对抗例xadvt+1应满足βt+2 αt > π,以保证扰动减小,即δt+1 =∥xadvt+1−x∥p < δt =∥xadvt−x∥p(当βt+2·αt = π时为等腰三角形,即δt+1 = δt)。
在这里插入图片描述
图1:TA任意迭代时的候选三角形示意图。在第t次迭代中,TA在采样子空间中构造一个角αt满足βt + 2αt > π的三角形,寻找一个新的对抗例xadvt+1,并相应地更新αt。注意,与现有的基于决策的攻击不同[5,38,35],TA没有在决策边界上限制xadvt,而是利用几何特性最小化低频空间中的扰动;使TA本身查询效率高

基于上述几何特性,我们提出了一种新颖且查询效率高的基于决策的攻击,称为三角攻击(Triangle attack, TA)。具体来说,在第th次迭代中,我们随机选择一条穿过良性样本x的方向线来确定一个二维子空间,在这个二维子空间中,我们基于当前对抗例xadvt、良性样本x、学习角αt、搜索角βt迭代构建三角形,直到构建的三角形的第三个顶点为对抗顶点。利用几何信息,我们可以在离散余弦变换(Discrete cos Transform, DCT)[1]产生的低频空间中进行TA,有效降维,提高效率。并进一步对αt进行了更新,使其适应于每个构造三角形的扰动优化。与大多数现有的基于决策的攻击不同,它不需要在决策边界上限制xadvt,也不需要在每次迭代时估计梯度,从而使TA查询高效。
我们的主要贡献总结如下:

  • 据我们所知,这是第一个通过几何信息直接优化频率空间的扰动,而不限制对手在决策边界上,从而获得较高的查询效率的工作。
  • 对ImageNet数据集的广泛评估表明,TA在1000个查询中表现出更高的攻击成功率,并且在5个模型上,与现有的SOTA攻击相比,TA只需要更少的查询数量就可以在相同的扰动预算下实现相同的攻击成功率[11,12,8,29,38,35]。
  • TA在腾讯云API上生成了更多的对抗性实例,具有难以察觉的扰动,显示了其工业级的适用性。

2. 相关工作

自从Szegedy等人[47]确定了对抗性的例子,大规模的对抗性攻击被提出来愚弄dnn。白盒攻击,如单步梯度攻击[21]、迭代梯度攻击[36,28,34,14]、优化攻击[47,6,3]等,常利用梯度,具有良好的攻击性能。它们已被广泛用于评估防御的模型鲁棒性[34,64,41,13,16],但由于信息有限,很难在现实世界中应用。为了使对抗性攻击能够应用于实际,各种黑盒攻击,包括基于转移的攻击[17,60,51,52,59],基于分数的攻击[9,26,49,2,18,63,65],基于决策的攻击[5,12,8,38,35],越来越受到人们的关注。其中,基于决策的攻击是最具挑战性的,因为它只能访问预测标签。在这项工作中,我们旨在利用几何信息来提高基于决策的攻击的查询效率,并对现有的基于决策的攻击进行简要概述。
边界攻击[5]是第一个基于决策的攻击,它初始化一个大扰动,并在保持对抗性的情况下在决策边界上执行随机游走。这种范式在随后的基于决策的攻击中被广泛采用。OPT[11]将基于决策的攻击问题定义为具有零阶优化的重值优化问题。而Sign-OPT[12]进一步计算方向导数的符号,而不是快速收敛的幅度。HopSkipJumpAttack (HSJA)[8]通过在决策边界上的二进制信息估计梯度方向来增强边界攻击。QEBA[29]增强了HSJA,使用从不同子空间采样的摄动,包括空间、频率和本征分量,获得更好的梯度估计。为了进一步提高查询效率,qFool[33]假设对例周围的边界曲率较小,并采用多个摄动向量进行有效的梯度估计。BO[43]采用贝叶斯优化在低维子空间中寻找对抗性扰动,并将其映射回原始输入空间,得到最终扰动。GeoDA[38]用超平面近似局部决策边界,并在超平面上搜索与良性样本最近的点作为对手。Surfree[35]在决策边界上迭代构造一个圆,在不进行梯度估计的情况下,采用二叉搜索找到所构造的圆与决策边界的交点作为对手。
现有的大多数基于决策的攻击在决策边界上的每次迭代都限制了对抗实例,并且通常采用不同的梯度估计方法进行攻击。在这项工作中,我们提出了三角攻击,通过利用正弦定律来直接最小化低频空间中的对抗扰动,而不需要梯度估计或将对抗示例限制在决策边界上,从而实现高效的基于决策的攻击。

3. 方法

在本节中,我们首先提供初步的内容。然后我们介绍了我们的动机和提出的三角攻击(TA)。

3.1 准备工作

给定分类器f,参数为θ,良性样本x∈X, 原始标签y∈Y,其中x表示所有图像,y为输出空间。对抗性攻击找到一个对手xadv∈X来误导目标模型:
在这里插入图片描述
其中,ε是扰动预算。基于决策的攻击通常首先产生一个较大的对抗性扰动δ,然后使扰动最小化,如下所示:
在这里插入图片描述
现有的基于决策的攻击[11,12,29]往往估计梯度来最小化扰动,这是耗时的。近年来,一些研究采用几何性质估计梯度或直接优化摄动。这里我们详细介绍了两种几何启发的基于决策的攻击。
GeoDA[38]认为,在数据点x附近的决策边界可以用一个超平面局部逼近,该超平面通过x附近的边界点xB,其法向量为w。因此,式(1)可以局部线性化:
在这里插入图片描述
这里xB是边界上的一个数据点,可以通过多次查询的二分搜索找到,GeoDA随机抽样几个数据点来估计w,以优化每次迭代的扰动。
Surfree[35]假设边界可以用边界点x+δ周围的超平面局部逼近。在每次迭代中,它用极坐标表示对手,并搜索一个最优θ来更新扰动:
在这里插入图片描述
u是从x到xadvt的单位向量,v是u的正交向量。

3.2 动机

与大多数基于决策的攻击采用梯度估计[11,12,29,38]或在决策边界上随机游走[5,35]不同,我们的目标是利用几何性质优化摄动,而不对梯度估计进行任何查询。在产生一个较大的对抗性扰动后,基于决策的攻击将对抗性样本移动到良性样本附近,即减少对抗性扰动δt,同时在每次迭代中保持对抗性特性。在本研究中,如图1所示,我们发现在第t次迭代时,良性样本x、当前对抗例xadvt和下一个对抗例xadvt+1可以很自然地在子空间中为任何迭代攻击构造一个三角形。
因此,搜索下一个扰动较小的对敌例xadvt+1相当于搜索一个基于x和xadvt的三角形,其中第三个数据点x’是对敌的,且满足||x '−x||p <||xadvt−x||p。这启发我们利用三角形中角和边长之间的关系来搜索一个合适的三角形,以使每次迭代时的扰动最小化。然而,如第4.4节所示,直接在输入图像上应用这种几何属性会导致非常糟糕的性能。由于这种几何性质的普遍性,我们优化了DCT[1]在低频空间产生的摄动,以实现有效的降维,表现出了如第4.4节所示的巨大攻击效率。
此外,由于Brendel等人[5]提出了边界攻击(BoundaryAttack),大多数基于决策的攻击[11,12,8,38,35]遵循的设置是每次迭代的对抗示例都应该在决策边界上。我们认为这样的限制在基于决策的攻击中是不必要的,但会在目标模型上引入太多的查询,从而无法接近边界。因此,我们在本研究中不采用此约束,并在第4.4节验证此论证。

3.3 三角攻击

在这项工作中,我们有以下假设,任何深度神经分类器f都存在对抗例子:
假设1:给定一个良性样本x和一个扰动预算ϵ,存在一个对决策边界的对抗扰动∥δ∥p≤ϵ,该对抗扰动会误导目标分类器f。
这是我们可以找到输入样本x的对抗性例子xadv的一个一般假设,这已经被许多著作验证过[21,6,3,5,54]。如果这个假设不成立,目标模型是理想的鲁棒性的,因此我们无法在摄动预算内找到任何对抗性的例子,这超出了我们的讨论范围。因此,我们遵循现有的基于决策的攻击框架,首先随机生成一个大型对抗性扰动,然后最小化该扰动。为了与之前的工作保持一致,我们使用二分搜索[29,38,35]在决策边界附近生成一个随机摄动,并主要关注扰动优化。
在任意对敌攻击的扰动优化过程的任意连续两次迭代中,即第t次和第(t+1)次迭代,输入样本x、当前对敌示例xadvt和下一个对敌示例xadvt+1可以很自然地在输入空间x的子空间中构造一个三角形。因此,如图1所示,减小摄动以生成xadvt+1,相当于搜索一个适当的三角形,其中三个顶点分别为x、xadvt和xadvt+1
定理1 (sin定理): 假设a, b和c是三角形的边长,α, β和γ是对角,我们有a/sin α = b/sin β = c/sin γ。
由定理1可得图1中三角形的边长与对角的关系:
在这里插入图片描述
为了尽量地减小扰动δt, 第t个三角形应满足该条件
在这里插入图片描述
因此,减小第t次迭代时的扰动可以通过寻找一个由输入样本x、当前对抗样本xadvt和角βt、αt构成的三角形来实现,该三角形满足βt+ 2αt> π且第三顶点为对抗顶点。我们将这样一个三角形表示为候选三角形,将T (x, xadvt, αt, βt, St)表示为第三个顶点,其中St是一个采样子空间。基于此,我们提出了一种新的基于决策的攻击,称为三角形攻击(TA),在每次迭代中搜索候选三角形并相应地调整角度αt
采样频率空间的二维子空间S。输入图像通常位于高维空间中,如ImageNet[27]中的224×224×3,该空间太大,攻击无法有效地探索邻域以最小化对抗扰动。前人的研究[22,29,35]表明,利用不同子空间中的信息可以提高基于决策的攻击效率。例如,QEBA[29]对随机噪声进行采样,在空间变换空间或低频空间中进行梯度估计,但用估计的梯度将输入空间中的扰动最小化。Surfree[35]优化了输入空间子空间中的摄动,该子空间由一个在低频空间中随机采样的单位向量决定。通常,低频空间包含了图像最关键的信息。由于TA在输入空间的性能较差(如第4.4节所示)和几何性质的普遍性(如图2所示),我们在每次迭代时直接优化频率空间的扰动,以实现有效的降维。我们在低频空间(前10%)中随机抽取一条横过良性样本的d维线。来自良性样本x和当前对手xadvt的采样线、方向线可以确定频率空间中唯一的二维子空间S,在该子空间中我们可以构造候选三角形以最小化扰动。通过逆DCT (IDCT)将最终对手转化为输入空间。
在这里插入图片描述
图2:第t次迭代时TA攻击的整个过程示意图。我们在频率空间中构建三角形,以有效地制作对抗示例。注意,这里我们使用DCT来演示,但我们不需要在每次迭代中对x使用它。由于DCT的一对一映射,我们仍然在频率空间中采用x和xadvt,没有模糊性

搜索候选三角形。给定子空间St,候选三角形只依赖于角β,因为α在优化过程中被更新。如图3所示,如果我们搜索一个角β,而没有找到对敌的例子(xadvt+1,1),我们可以进一步构造一个反方向角度相同的对称三角形,以检验与xadvt+1,1具有相同摄动量级但方向不同的数据点xadvt+1,2。对于没有歧义的对称三角形,我们将角表示为−β。注意,在相同的角度α下,较大的角度β会使第三个顶点更接近输入样本x,即较小的扰动。确定子空间St后,我们首先检查角βt,0 = max(π−2α, β’),其中β’ = π/16是一个预先定义的小角。如果T (x, xadvt, αt,βt,0, St)和T (x, xadvt, αt, - βt,0, St)都不是对抗性的,我们放弃这个子空间,因为它不能带来任何好处。另外,我们采用二分搜索的方法,寻找一个使摄动尽可能小的最佳角度β*∈[max(π−2α, β’), min(π−α, π/2)]。这里我们限制了β的上界,因为T (x, xadvt, αt, β, St)将在相反的方向上。X对于β > π/2和π−α保证了一个有效的三角形。
在这里插入图片描述
图3:对称候选三角形(x, xadvt和xadvt+1,2)的说明。当角度β不能导致对抗示例(xadvt+1,1)时,我们将进一步基于线= (x, xadvt)构建对称三角形,以检查数据点xadvt+1,2

调整角度α。直观地说,角度α平衡了扰动的大小和找到对抗性例子的难度:
命题1在β角相同的情况下,α角越小越容易找到对抗性的例子,而α角越大扰动越小。
直观地看,如图4所示,角α越小,扰动越大,但越有可能越过决策边界,更容易搜索对抗性的例子,反之亦然。每次迭代都很难找到最优α,更不用说各种输入图像和目标模型了。因此,我们根据精心制作的对抗示例自适应调整角度α:
在这里插入图片描述
其中xadvt,i+1 = T (x, xadvt, αt,i, βt,i, St)为根据αt,i生成的对抗样例, γ为变化率,λ为常数,τ限制α的上界和下界所产生的对抗性示例。在扰动优化过程中,考虑到失败多于成功,我们采用λ < 1来防止角度下降过快。注意,较大的角度α使它更难找到对抗性的例子。
在这里插入图片描述
图4:α的幅值对TA中候选三角形的影响。对于相同的采样角β,角α越大,扰动越小,但越有可能越过决策边界

但是,如果α角过小,β的边界会降低很多,这也使得T (x, xadvt, αt, βt, St)远离当前对抗例xadvt,降低了找到对抗例的概率。因此,我们添加α的上界,将其限制在一个适当的范围内。
TA在低频空间采样的子空间St中迭代搜索候选三角形,找到对抗性的例子,并相应地更新角度α。整个TA算法总结在算法1中。
在这里插入图片描述

4. 实验

在本节中,我们使用五个模型和腾讯云API对标准ImageNet数据集进行了广泛的评估,以评估TA的有效性。代码可从https://github.com/xiaosen-wang/TA获得。

4.1 实验设置

数据集。为了验证所提出的TA的有效性,在Surfree[39]设置后,我们从ILSVRC 2012验证集中随机抽取200张正确分类的图像,在相应的模型上进行评估。
模型。我们考虑了五个广泛采用的模型,即VGG-16 [44], Inceptionv3 [45], ResNet-18 [24], ResNet-101[24]和DenseNet-121[25]。为了验证其在现实世界中的适用性,我们在腾讯云API3上对TA进行了评估。
基线。我们以各种基于决策的攻击为基线,包括四种基于梯度估计的攻击,即OPT [11], siginpt [12], HSJA [8], QEBA[29],一种基于优化的攻击,即BO[43],以及两种基于几何的攻击,即GeoDA [38], Surfree[35]。
评价指标。根据QEBA[29]中的标准设定,我们采用良性样本x与对抗样本xadv之间的均方根误差(RMSE)来测量扰动的大小:
在这里插入图片描述
其中w、h、c分别为输入图像的宽度、高度和通道数。我们还采用攻击成功率,即达到一定距离阈值的对抗实例的百分比。
Hyper-parameters。为了便于比较,所有攻击均采用与[35]相同的对抗性扰动初始化方法,基线超参数与原始论文完全相同。对于我们的TA,我们采用每个子空间的最大迭代次数N = 2,方向线的维数d = 3, γ = 0.01,更新角 λ = 0.05, τ = 0.1。

4.2 标准模型的评价

为了评估TA的有效性,我们首先比较了五种流行模型的不同基于决策的攻击性能,并报告了在不同RMSE阈值(即0.1,0.05和0.001)下的攻击成功率。
我们首先评估1000个查询内的攻击,这在最近的工作中被广泛采用[8,38,35]。表1总结了攻击成功率,这意味着如果在没有达到给定阈值的情况下进行1000次查询,则攻击将无法为输入图像生成对抗示例。我们可以观察到,在五种不同架构的模型上,在不同的扰动预算下,TA始终比现有的基于决策的攻击获得更好的攻击成功率。例如,在ResNet-101(广泛用于评估基于决策的攻击)的RMSE阈值0.1、0.05、0.01下,TA以1.0%、7.5%和13.0%的明显差距优于亚军攻击。特别地,本文提出的TA明显优于GeoDA[38]和Surfree[35]这两种基于几何的攻击,在基线中表现出最好的攻击性能。这令人信服地验证了所提出的TA的高有效性。此外,在五个模型中,Inceptionv3[46]在不同摄动预算下对基线和TA都表现出比其他模型更好的鲁棒性,在基于决策的攻击中很少被研究。因此,有必要彻底评估各种架构上基于决策的攻击,而不仅仅是ResNet模型。
在这里插入图片描述
表1:5种模型在不同RMSE阈值下的攻击成功率(%)最大查询次数设置为1000个。我们用粗体突出显示最高的攻击成功率

为了进一步验证TA的高效率,我们分别在RMSE阈值0.1、0.05和0.01下调查了实现各种攻击成功率的查询次数。最大查询次数设置为10,000次,在ResNet-18上的结果汇总如图5所示。如图5a和5b所示,当RMSE阈值分别为0.1和0.05时,TA实现各种攻击成功率所需的查询次数要少得多,可见我们的方法查询效率较高。对于较小的阈值0.01,如图5c所示,我们的TA在实现攻击成功率小于50%的情况下,仍然需要较少的查询次数,但未能实现攻击成功率高于60%的情况。请注意,如图6和表1所示,RMSE阈值0.01非常严格,因此扰动难以察觉,但也很难生成基于决策的攻击的对抗示例。由于我们主要关注的是基于几何信息的攻击查询效率,在RMSE阈值0.01下的攻击性能是可以接受的,因为在攻击真实应用程序时,如此高的查询数量是不现实的。
在这里插入图片描述
图5:在不同扰动预算下,针对攻击基线和提出的TA,在ResNet-18上实现给定攻击成功率的查询数量。最大查询数为10,000

此外,由于TA的目标是利用三角形几何来提高查询效率,当允许更多的查询时,全局最优可能比现有的基于梯度估计的攻击更差。在没有梯度估计的情况下,其他几何启发方法的性能也比QEBA[29]差。然而,这不是TA的目标,可以很容易地用梯度估计来解决。由于TA的效率高,我们可以将TA作为精确梯度估计攻击(如QEBA[29])的热身,在高查询数量可以接受的情况下,以较低的查询数量获得较高的攻击性能。我们在2000次查询后将QEBA[29]中使用的梯度估计集成到TA中,称为TAG。在扰动预算为0.01的情况下,TAG使用7000个查询实现了95%的攻击成功率,优于使用9000个查询92%的最佳基线。

4.3 现实应用评估

随着dnn的卓越性能和前所未有的进步,许多公司已经将dnn部署到各种任务中,并为不同的任务提供商业api(应用程序编程接口)。开发人员可以为这些服务付费,以便将api集成到他们的应用程序中。然而,dnn对对抗实例的脆弱性,特别是不需要任何目标模型信息的基于决策的攻击的繁荣,对这些现实应用构成了严重的威胁。利用腾讯云API验证了该算法的实际攻击适用性。由于商业api的高成本,我们从ImageNet验证集中随机抽取20张图像,最大查询次数为1000。
在这里插入图片描述
表2:在200/500/1000次查询中,各种攻击基线和腾讯云API上提出的TA成功生成的对抗样例数量。由于在线api成本高,从ImageNet中正确分类的图像中随机抽取20张图像对结果进行评估

成功攻击的图像数量如表2所示。我们可以观察到,在不同的RMSE阈值下,在200、500和1000个查询范围内,TA成功地生成了比攻击基线更多的对抗示例。特别是,我们的TA可以在500个查询中生成更多的对抗性示例,而不是在1000个查询中生成最好的攻击基线,显示了TA的优势。我们还在图6中可视化了一些由TA生成的对抗示例。我们可以看到,TA可以在查询较少(≤200)的情况下,成功地为各种类别生成高质量的对抗样例,验证了TA在现实世界中的高适用性。特别是当查询次数为200次时,TA生成的对抗性示例对于人类来说几乎是视觉上难以察觉的,这凸显了当前商业应用的脆弱性。
在这里插入图片描述
图6:TA针对腾讯云API制作的对抗性示例。#Q.表示攻击的查询次数,RMSE表示良性样本与对抗样本之间的RMSE距离。我们分别在最左边和最右边的列上报告正确的标签和预测的标签(详细信息请放大)。

4.4 消融实验

在本节中,我们对ResNet-18进行了一系列的消融研究,即TA选择的子空间、低频子空间的比值以及更新角α的变化率γ和λ。关于采样线d的维数和α的界τ的参数研究总结在附录B中。
在TA选择的子空间上。与现有的基于决策的攻击不同,TA所使用的几何性质的通用性使得直接优化频率空间中的扰动成为可能。为了研究频率空间的有效性,我们在不同的空间,即输入空间(TAI)中实现TA,对频率空间中的方向线进行采样,但优化Surfree[35]和全频率空间(TAF)使用的输入空间(TAFI)中的扰动。如表3所示,由于输入空间高维,TAI无法有效地探索输入样本的邻域以找到良好的摄动,性能非常差。对于从频率空间到子空间的采样信息,TAFI比TAI表现出更好的结果。在全频率空间优化扰动时,TAF比TAFI能获得更高的攻击成功率,体现了频率空间的优势。在利用低频信息对子空间进行采样时,TA获得了比其他攻击更好的性能,支持了TA选择子空间的必要性和合理性。
在这里插入图片描述
表3:ResNet-18在不同空间下的消融研究,即输入空间(TAI)、线采样频率空间(TAFI)和无掩模全频率空间(TAF)

关于低频子空间的比值。低频域在提高TA效率方面起着关键作用。但是,由于低频对应高频,因此没有识别低频的判据,高频通常由给定比值的频域下半部分决定。在这里,我们研究了这个比例对TA攻击性能的影响。如图7所示,在较小的RMSE阈值下,比值对攻击成功率的影响更为显著。一般来说,增大比值会大致降低攻击性能,因为它会使TA更关注高频域,而高频域包含的图像关键信息较少。因此,我们采用较低的10%部分作为低频子空间,效率较高,这也有助于TA有效降维,更容易被攻击。
在这里插入图片描述
图7:3个RMSE阈值下,低频子空间的不同比值下,TA在ResNet-18上1000次查询内的攻击成功率(%)

关于变化率γ和λ的更新角度α。如第3.3节所述,角α在选择更好的候选三角形方面起着关键作用,但对于不同的迭代和输入图像,很难找到一致的最优α。我们假设α角越大,寻找候选三角形就越困难,但扰动越小。如式(3),如果我们成功地找到一个三角形,我们将用γ增加α。否则,α随λγ的变化而减小。我们在图8中研究了各种γ和λ的影响。这里我们仅报告RMSE = 0.01的结果,RMSE = 0.1/0.05的结果表现出相同的趋势。一般而言,γ = 0.01比γ = 0.05/0.005具有更好的攻击性能。当我们以γ = 0.01增加λ时,攻击成功率增加到λ = 0.05,然后下降。我们还研究了在Eq.(3)中控制α边界的τ的影响,它在1000个查询中显示稳定的性能,但在10,000个查询中生效,我们简单地采用τ = 0.1。在我们的实验中,我们采用γ = 0.01, λ = 0.05和τ = 0.1。
在这里插入图片描述
图8:RMSE = 0.01下,使用不同γ和λ更新α, TA在ResNet-18上1000次查询的攻击成功率(%)

4.5 进一步讨论

边界攻击[5]在决策边界上采用随机游走,使基于决策的攻击的扰动最小化,后续工作往往遵循此设置来限制决策边界上的对抗例。我们认为这样的限制是没有必要的,我们的助教也没有采用。为了验证这一论点,在我们找到候选三角形后,我们还进行了二分搜索,在每次迭代中将对抗性示例移动到决策边界,以研究这种限制的好处。如图9所示,当二进制搜索迭代次数为0时,vanilla TA的攻击成功率最高。当我们增加Nbs时,二分搜索在每次迭代中接受更多的查询,这降低了给定总查询数下的总迭代数。一般情况下,随着Nbs的增加,攻击成功率稳定下降,特别是当RMSE = 0.01时,这意味着二分搜索在决策边界上限制对抗例的代价(即查询)是不值得的。对于大多数基于决策的攻击来说,这种限制可能是不可靠和不合理的,特别是对于基于几何的攻击。我们希望这能引起更多的关注,讨论在决策边界上限制对抗性示例的必要性,并为设计更强大的基于决策的攻击提供新的思路。
在这里插入图片描述
图9:TA使用不同迭代次数的二叉搜索(Nbs)在每次迭代的决策边界上限制对手的攻击成功率(%)

5. 总结

在这项工作中,我们发现,对于任何迭代攻击,良性样本、当前和下一次对抗示例都可以在每次迭代中自然地在子空间中构造一个三角形。基于这一观察,我们提出了一种新的基于决策的攻击,称为三角形攻击(TA),它利用了任何三角形中较长的边与较大的角相对的几何信息。具体而言,在每次迭代中,TA在良性样本上随机采样一条方向线以确定一个子空间,在该子空间中,TA迭代搜索一个候选三角形以最小化对抗性扰动。利用几何性质的普遍性,TA直接优化了DCT在比输入空间低很多维数的低频空间中产生的对抗性扰动,显著提高了查询效率。大量的实验证明,TA在1000个查询中获得了更高的攻击成功率,并且需要更少的查询才能达到相同的攻击成功率。在腾讯云API上的实际应用也验证了TA的优越性。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值