异常检测-task2

基于统计学方法的异常检测

1、概述

1.1 基本原理

首先假设正常数据服从某一分布,对于异常点,并不符合该分布,由此可以利用统计学方法找到异常点。一般思想为:学习一个拟合给定数据集的生成模型,然后识别该模型低概率区域中的对象,把它们作为异常点。

1.2 主要类型
  • 参数方法
    假定正常的数据对象被一个以 Θ \Theta Θ为参数的参数分布产生。该参数分布的概率密度函数 f ( x , Θ ) f(x,\Theta) f(x,Θ)给出对象 x x x在该分布下的概率。该值越小, x x x越可能是异常点。
  • 非参数方法
    并不假定先验分布,而是通过输入数据确定模型,并不是完全无参,只是参数的个数和性质很灵活。

2、参数方法

2.1 正态分布下的异常点检测

对于一维数据集 { x ( 1 ) , x ( 2 ) , . . . , x ( m ) } \{x^{(1)}, x^{(2)}, ..., x^{(m)}\} {x(1),x(2),...,x(m)},可以假定它们服从一元正态分布: x ( i ) ∼ N ( μ , σ 2 ) x^{(i)}\sim N(\mu, \sigma^2) x(i)N(μ,σ2),对于参数 μ \mu μ σ \sigma σ,可以用矩法估计的思想求出来:

μ = 1 m ∑ i = 1 m x ( i ) \mu=\frac 1m\sum_{i=1}^m x^{(i)} μ=m1i=1mx(i)

σ 2 = 1 m ∑ i = 1 m ( x ( i ) − μ ) 2 \sigma^2=\frac 1m\sum_{i=1}^m (x^{(i)}-\mu)^2 σ2=m1i=1m(x(i)μ)2

得到参数后就意味着找到了正态分布的概率密度函数;接下来可以设定阈值,以此找到异常点(概率小于该阈值的数据)例如:常见的3 σ \sigma σ原则:超出 ( μ − 3 σ , μ + 3 σ ) (\mu-3\sigma, \mu+3\sigma) (μ3σ,μ+3σ)的数据可以被认为是异常点;也可以利用箱线图,找到上下四分位数( Q1、Q3),此时,异常点常被定义为小于Q1-1.5IQR或大于Q3+1.5IQR的那些数据。
利用如下的Python代码可以很容易的画出箱线图

import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

data = np.random.randn(50000) * 20 + 20
sns.boxplot(data=data)

结果如下

箱线图

2.2 多元数据下的异常点检测

当数据的维度大于1时,可以将一元异常点的检测方法推广到多元,具体方法为:多元异常点检测任务转换成一元异常点检测问题。例如基于正态分布的一元异常点检测扩充到多元情形时,可以求出每一维度的均值和标准差(利用矩法估计),此时的概率密度函数为:
p ( x ) = ∏ j = 1 n p ( x j ; μ j , σ j 2 ) = ∏ j = 1 n 1 2 π σ j e x p ( − ( x j − μ j ) 2 2 σ j 2 ) p(x)=\prod_{j=1}^n p(x_j;\mu_j,\sigma_j^2)=\prod_{j=1}^n\frac 1{\sqrt{2\pi}\sigma_j}exp(-\frac{(x_j-\mu_j)^2}{2\sigma_j^2}) p(x)=j=1np(xj;μj,σj2)=j=1n2π σj1exp(2σj2(xjμj)2)
上式适用于各个维度相互独立的情况,在各个维度之间由关联时,需要用到多元高斯分布

  • 多元高斯分布
    μ = 1 m ∑ i = 1 m x ( i ) \mu=\frac{1}{m}\sum^m_{i=1}x^{(i)} μ=m1i=1mx(i)
    ∑ = 1 m ∑ i = 1 m ( x ( i ) − μ ) ( x ( i ) − μ ) T \sum=\frac{1}{m}\sum^m_{i=1}(x^{(i)}-\mu)(x^{(i)}-\mu)^T =m1i=1m(x(i)μ)(x(i)μ)T
    p ( x ) = 1 ( 2 π ) n 2 ∣ Σ ∣ 1 2 exp ⁡ ( − 1 2 ( x − μ ) T Σ − 1 ( x − μ ) ) p(x)=\frac{1}{(2 \pi)^{\frac{n}{2}}|\Sigma|^{\frac{1}{2}}} \exp \left(-\frac{1}{2}(x-\mu)^{T} \Sigma^{-1}(x-\mu)\right) p(x)=(2π)2nΣ211exp(21(xμ)TΣ1(xμ))

3 非参数方法

对数据集进行先验分布假定是一件主观性很强的事,而非参数方法不受参数的拘束,因此在很多情况下都适用。

  • 直方图法
    1.构造直方图。使用输入数据(训练数据)构造一个直方图。该直方图可以是一元的,或者多元的(如果输入数据是多维的)。指定直方图的类型(等宽的或等深的)和其他参数(直方图中的箱数或每个箱的大小等)。与参数方法不同,这些参数并不指定数据分布的类型。
    2.检测异常点。为了确定一个对象是否是异常点,可以对照直方图检查它。在最简单的方法中,如果该对象落入直方图的一个箱中,则该对象被看作正常的,否则被认为是异常点。也可以使用直方图赋予每个对象一个异常点得分。例如令对象的异常点得分为该对象落入的箱的容积的倒数。

使用直方图检验异常点的方法也有缺陷:对箱尺的要求严格,尺寸太小,正常点落不到箱中,尺寸太大,部分异常点成为漏网之鱼

4、HBOS(Histogram-based Outlier Score)

1.为每个数据维度做出数据直方图。对分类数据统计每个值的频数并计算相对频率。对数值数据根据分布的不同采用以下两种方法:

  • 静态宽度直方图:标准的直方图构建方法,在值范围内使用k个等宽箱。样本落入每个桶的频率(相对数量)作为密度(箱子高度)的估计。时间复杂度: O ( n ) O(n) O(n)

  • 动态宽度直方图:首先对所有值进行排序,然后固定数量的 N k \frac{N}{k} kN个连续值装进一个箱里,其 中N是总实例数,k是箱个数;直方图中的箱面积表示实例数。因为箱的宽度是由箱中第一个值和最后一个值决定的,所有箱的面积都一样(因为箱子中的数量一样),因此每一个箱的高度都是可计算的。这意味着跨度大的箱的高度低,即密度小,只有一种情况例外,超过k个数相等,此时允许在同一个箱里超过 N k \frac{N}{k} kN值。

    时间复杂度: O ( n × l o g ( n ) ) O(n\times log(n)) O(n×log(n))

2.对每个维度都计算了一个独立的直方图,其中每个箱子的高度表示密度的估计。然后为了使得最大高度为1(确保了每个特征与异常值得分的权重相等),对直方图进行归一化处理。最后,每一个实例的HBOS值由以下公式计算:
H B O S ( p ) = ∑ i = 0 d log ⁡ ( 1 hist i ( p ) ) H B O S(p)=\sum_{i=0}^{d} \log \left(\frac{1}{\text {hist}_{i}(p)}\right) HBOS(p)=i=0dlog(histi(p)1)
推导如下:

假设样本pi 个特征的概率密度为 p i ( p ) p_i(p) pi(p) ,则p的概率密度可以计算为:
P ( p ) = P 1 ( p ) P 2 ( p ) ⋯ P d ( p ) P(p)=P_{1}(p) P_{2}(p) \cdots P_{d}(p) P(p)=P1(p)P2(p)Pd(p)
两边取对数:
log ⁡ ( P ( p ) ) = log ⁡ ( P 1 ( p ) P 2 ( p ) ⋯ P d ( p ) ) = ∑ i = 1 d log ⁡ ( P i ( p ) ) \begin{aligned} \log (P(p)) &=\log \left(P_{1}(p) P_{2}(p) \cdots P_{d}(p)\right) =\sum_{i=1}^{d} \log \left(P_{i}(p)\right) \end{aligned} log(P(p))=log(P1(p)P2(p)Pd(p))=i=1dlog(Pi(p))
概率密度越大,异常评分越小,为了方便评分,两边乘以“-1”:
− log ⁡ ( P ( p ) ) = − 1 ∑ i = 1 d log ⁡ ( P t ( p ) ) = ∑ i = 1 d 1 log ⁡ ( P i ( p ) ) -\log (P(p))=-1 \sum_{i=1}^{d} \log \left(P_{t}(p)\right)=\sum_{i=1}^{d} \frac{1}{\log \left(P_{i}(p)\right)} log(P(p))=1i=1dlog(Pt(p))=i=1dlog(Pi(p))1
最后可得:
H B O S ( p ) = − log ⁡ ( P ( p ) ) = ∑ i = 1 d 1 log ⁡ ( P i ( p ) ) H B O S(p)=-\log (P(p))=\sum_{i=1}^{d} \frac{1}{\log \left(P_{i}(p)\right)} HBOS(p)=log(P(p))=i=1dlog(Pi(p))1
HBOS在全局异常检测问题上表现良好,但不能检测局部异常值。但是HBOS比标准算法快得多,尤其是在大数据集上。

4 利用pyod库调用HBOS

from __future__ import division
from __future__ import print_function

import os
import sys

# temporary solution for relative imports in case pyod is not installed
# if pyod is installed, no need to use the following line
sys.path.append(
    os.path.abspath(os.path.join(os.path.dirname("__file__"), '..')))

from pyod.models.hbos import HBOS
from pyod.utils.data import generate_data
from pyod.utils.data import evaluate_print
from pyod.utils.example import visualize

if __name__ == "__main__":
    contamination = 0.1  # percentage of outliers
    n_train = 200  # number of training points
    n_test = 100  # number of testing points

    # Generate sample data
    X_train, y_train, X_test, y_test = \
        generate_data(n_train=n_train,
                      n_test=n_test,
                      n_features=2,
                      contamination=contamination,
                      random_state=42)

    # train HBOS detector
    clf_name = 'HBOS'
    clf = HBOS()
    clf.fit(X_train)

    # get the prediction labels and outlier scores of the training data
    y_train_pred = clf.labels_  # binary labels (0: inliers, 1: outliers)
    y_train_scores = clf.decision_scores_  # raw outlier scores

    # get the prediction on the test data
    y_test_pred = clf.predict(X_test)  # outlier labels (0 or 1)
    y_test_scores = clf.decision_function(X_test)  # outlier scores

    # evaluate and print the results
    print("\nOn Training Data:")
    evaluate_print(clf_name, y_train, y_train_scores)
    print("\nOn Test Data:")
    evaluate_print(clf_name, y_test, y_test_scores)

    # visualize the results
    visualize(clf_name, X_train, y_train, X_test, y_test, y_train_pred,
              y_test_pred, show_figure=True, save_figure=False)

结果及可视化如下:

hbos-roc
hbos-可视化

HBOS算法在训练集上的ROC为0.8,在验证集上的ROC为0.6,效果一般

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值